Personalized Medicine With Omega-3 Fatty Acids for Depression in Children and Pregnant Women and Depression Associated With Inflammation

Clinicians and researchers are facing a huge challenge of developing new treatments for major depressive disorder (MDD) despite the advance of neurosciences. Current pharmacotherapy overwhelmingly dominates depression treatment but does not meet clinical needs. Indeed, using current diagnostic systems inevitably makes MDD patient groups heterogeneous and results in only small to modest effects from every antidepressant treatment. As detailed in a consensus statement in *World Psychiatry* by my colleagues and I from the International Society for Nutritional Psychiatry Research, nutritional medicine is a promising strategy for the crisis of undereffectiveness in depression treatment. Omega-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have a range of neurobiological activities that contribute to their potential antidepressant effects, which have been supported by recent well-conducted randomized controlled trials (RCTs). However, the effect sizes of omega-3 PUFAs for MDD are also modest. To improve the clinical application, it is important to “stratify” MDD for specific therapies, which is so-called personalized medicine.

Pharmacotherapy for MDD in pregnant women and children is still a clinical dilemma. To date, the US Food and Drug Administration approves no psychotropic drugs during pregnancy and even issues a black box warning of suicidal risk on antidepressants for children. Omega-3 PUFAs are important nutrients for pregnant women and young brains. So far, 2 double-blind, placebo-controlled RCTs have been conducted to investigate the therapeutic efficacy of omega-3 PUFAs in pregnant women with clinically defined MDD. Rees and colleagues’ study failed to prove efficacy probably because of the insufficient composition in supplementation (ie, 0.4 g/d of EPA and 1.5 g/d of DHA). Indeed, previous clinical trials and meta-analyses have suggested that EPA, rather than DHA, might be the most active component of omega-3 PUFAs’ antidepressant effects. The other study, on the other hand, using 2.2 g/d of EPA and 1.2 g/d of DHA, confirmed that omega-3 PUFAs were significantly better than placebo to improve depressive symptoms and achieve treatment response. Suboptimal levels of omega-3 PUFAs are emerging as a potential risk factor for brain disorders in younger populations. A small RCT recruiting 20 children aged between 8 and 12 years showed that daily supplementation of 0.4 g EPA and 0.4 g DHA was significantly better than placebo to improve depression symptomatology in a 16-week intervention. These RCTs in pregnant women and children are well conducted and the results are promising, but the

Figure 1. Effect Sizes (ESs) of Eicosapentaenoic Acid (EPA) Versus Placebo or Docosahexaenoic Acid (DHA) Separated Increasingly With Increasing Numbers of Biomarkers of High Inflammation in a Double-Blind, Placebo-Controlled Trial of Omega-3 Fatty Acids in Depression

---

This figure depicts the findings of Rapaport et al. The overall treatment group differences were negligible (ES, −0.09 to −0.13) in all subjects with major depressive disorder (MDD) according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV). However, subjects classified as having “high” inflammation improved more with EPA than placebo (ES, −0.39 to −1.11 from any 1 marker to 4–5 markers) or DHA (ES, −0.60 to −1.10 from any 1 marker to 4–5 markers).
Letters to the Editor

Kuan-Pin Su, MD, PhD
cobolsu@gmail.com

Author affiliations: Department of Psychiatry & Mind-Body Interface Laboratory (IMB-Laboratory), China Medical University Hospital; and Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung, Taiwan.

Potential conflicts of interest: None reported.

Acknowledgments: Dr Su’s research work included in this review was supported exclusively by the Taiwan government with the following grants: MOST103-2320-B-039-MY3, MOST103-2320-B-038-012-MY3, NSC 103-2923-B-039-002-MY3, 102-2911-I-039-501, 101-2628-B-039-001-MY3, and 101-2302-B-038-020-MY2 from the Ministry of Science and Technology and CMU103-S-03, DMR-103-078, 102-068, and 101-2320-B-038-012-MY3, MOST103-2320-B-039-MY3, and CMU101-1001 from the China Medical University in Taiwan.


© Copyright 2015 Physicians Postgraduate Press, Inc.

References


It is illegal to post this copyrighted PDF on any website.