Psychopharmacology of Wakefulness: Pathways and Neurotransmitters

Stephen M. Stahl, M.D., Ph.D.

Issue: The neuroanatomical substrate of wakefulness involves 2 parallel pathways that activate the cortex, one arising from neurons in the brainstem and another arising from neurons that make up a hypothalamic sleep-wake switch. Multiple neurotransmitters regulate wakefulness as do several drugs, including the novel wake-promoting agent modafinil.

Figure 1. Stimulated Vigilance

- Fright
- External Vigilance
- Worry

- Dopamine
- Serotonin
- Norepinephrine
- Acetylcholine

Figure 2. Calm Wakefulness

- Thinking/Cognition
- Creativity
- Problem Solving

- Histamine

Monoaminergic projections from brainstem to cortex via the ascending reticular activating system are illustrated here. Perhaps one form of arousal is a stimulated type of external vigilance, with tense hyper-arousal, putting the individual on the lookout for threats from the environment. This type of arousal may be mediated by the monoamines dopamine, norepinephrine, serotonin, and acetylcholine via their ascending projections from the brainstem as part of the classical reticular activating system. The ability to activate this system enhances the survival of an individual in a hostile environment. Stimulants such as amphetamine and caffeine activate this system.

Another form of arousal may be a more reflective type of calm wakefulness, in which there is internal vigilance to executive functions as the individual focuses on cognitive tasks. Such wakefulness may be mediated by the ascending histaminergic neurons arising from the hypothalamus. The ability to activate this system would lead to problem solving, learning, and creativity. Not only can stimulants and caffeine activate this system when they also activate stimulated vigilance, but the novel wake-promoting agent modafinil can activate normal wakefulness selectively without turning on stimulated vigilance.
ew developments in the psychopharmacology of sleep and wakefulness were discussed last month. Here we illustrate the pathways and neurotransmitters involved in the psychopharmacology of wakefulness.

Suprachiasmatic Nucleus
(Located inside the hypothalamus just dorsal to the optic chiasma, it acts as the brain’s pacemaker for the sleep-wake switch.)

Wake Switch
The switch can be thrown “on” either by histamine, which inhibits the sleep promoter, or by the novel peptide neurotransmitter orexins/hypocretins, which activate the wake promoter.

Sleep Switch
The switch can be thrown “off” by both GABA (γ-aminobutyric acid) or the novel peptide neurotransmitter galanin as well as by common antihistamines, all of which inhibit the wake promoter by blocking histamine, thus promoting sedation.

Normal wakefulness may be an all-or-nothing phenomenon, with the hypothalamus providing a reciprocal switching circuit so that the brain can be either “on” (calm wakefulness) or “off” (asleep). Such an arrangement would largely avoid intermediate states and allow relatively brief times to be spent in transitions between the waking or sleeping states. One model of the normal sleep-wake cycle proposes that wake-promoter and sleep-promoter neurons inhibit each other, thus causing oscillation between wakefulness and sleep.

REFERENCE