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ntensive effort in the development of antidepressant
treatments over the last 4 decades has led to the current
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I
availability of almost 3 dozen medications worldwide. To
date, all of the commonly used agents have specific
pharmacologic effects on monoamine systems. Despite
immediate and potent binding to monoamine targets, anti-
depressant medications generally require weeks of ad-
ministration before optimal antidepressant benefits are
achieved. Consideration will be given to the role of seroto-
nin (5-HT) and norepinephrine in the pathophysiology of
major depression and in the mechanism of action of anti-
depressants, focusing on clinical findings. Development
of new treatments has traditionally been guided by inter-
pretation of these findings; however, persisting treatment
limitations (i.e., delayed onset, “efficacy ceiling,” unsus-
tained remissions) reflect limitations of monoamine mod-
els of antidepressant action. A sampling of other, poten-
tially complementary, conceptions of antidepressant
action is also presented.

SEROTONIN THEORIES OF
ANTIDEPRESSANT ACTION

The original serotonin deficiency hypothesis suggested
that depression results from decreased central 5-HT and

that antidepressants work via increasing 5-HT,1,2 a hypoth-
esis founded on the observation that monoamine oxidase
inhibitors (MAOIs) and tricyclic antidepressants (TCAs)
both increase 5-HT levels in animals and possess potent
antidepressant activity. This model, however, did not ex-
plain important findings: (1) the ambiguous relationship
of 5-HT and metabolite levels with depressive symptoms,
(2) the latency of response to antidepressants, (3) drug
combinations that rapidly enhance 5-HT release but do not
confer immediate antidepressant effects, and (4) disrup-
tion of 5-HT neurotransmissions (via the paradigm of
tryptophan depletion3) in nondepressed human subjects, as
well as in recently remitted patients taking agents other
than SSRIs, that does not provoke depressive symptoms.

Several groups later advanced hypotheses of antide-
pressant action based on enhanced 5-HT neurotransmis-
sion4–6 founded largely on preclinical observations of the
effect of repeated antidepressant administration in altering
receptor sensitivity, receptor density, neuronal firing char-
acteristics, and behavioral responses to specific serotoner-
gic agents. In these studies, no solitary or universal effect
of repeated antidepressant administration emerged; how-
ever, considered in entirety, these studies show that
chronic—but not acute—antidepressant treatment in-
creases the efficiency of serotonergic neurotransmission.

Electrophysiologic assessment of 5-HT neurons and
antidepressant effects on them have refined the prevailing
serotonin-based model of antidepressant action.6,7

Chronic, but not acute, administration of all antidepres-
sants tested to date is associated with enhanced hippocam-
pal 5-HT1A–mediated neurotransmission, as determined
via electrophysiologic studies in rodents. The mechanism
of this enhancement varies among antidepressant classes.
Chronic administration of the tricyclic noradrenergic and
mixed reuptake inhibitors, electroconvulsive shocks, and
lithium enhances postsynaptic 5-HT1A responsivity with-
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out significantly altering presynaptic 5-HT1A function.
Chronic administration of selective serotonin reuptake in-
hibitors (SSRIs) and MAOIs leads to desensitization of the
presynaptic 5-HT1A and, in the case of SSRIs, 5-HT1D au-
toreceptors. Mirtazapine administration is associated with
increased 5-HT neurotransmission via desensitization of
α2-adrenergic receptors located on 5-HT nerve terminals.8

Clinical application of this model would suggest that
concurrent administration of a 5-HT1A antagonist with an
SSRI in depressed subjects may result in immediate remis-
sion. Although there are no available selective 5-HT1A an-
tagonists for human use, pindolol, commonly known as a
nonselective β-adrenergic blocker, has potent 5-HT1A an-
tagonism activity. In laboratory animals, concurrent ad-
ministration of pindolol and SSRIs has been shown to in-
crease serotonin release9 and neuronal firing rate.10

Multiple open and controlled trials have assessed the use
of pindolol in hastening response to SSRIs.11–17

Although the initial open-label trials from 2 research
groups suggested that over 80% of patients (13/16) re-
spond within 1 week,12,13 controlled trials have yielded
more moderate results. The majority of randomized con-
trolled trials with pindolol-SSRI combinations have re-
ported response rates upward of 50% after 2 weeks on
medication. A negative report by our group11 may be inter-
preted to suggest that pindolol is differentially effective in
select depressed populations, specifically in patients with
first-episode depressions characterized by acute onset.
Overall, the reported successes of pindolol in hastening
antidepressant response add compelling support to the
model of SSRI action elucidated above.

Additionally, application of this model would suggest
that concurrent administration of an SSRI with an
α2-adrenergic antagonist would accelerate and/or enhance
serotonergic neurotransmission by blocking inhibitory
α2-adrenoceptors on 5-HT nerve terminals. Extrapolating
clinically, such a pharmacologic strategy may hasten anti-
depressant response or improve efficacy. In a test of
this strategy, our group has found that yohimbine, an
α2-adrenergic antagonist, hastens response to fluoxetine18

and reduces depression scores in subjects who were resis-
tant to multiple medication trials including an ongoing trial
of fluvoxamine.19 Indeed, these results are consistent with
the anecdotal impression among clinicians that mirtazapine
addition is efficacious in SSRI-resistant depression.

In sum, a prevailing serotonin model of antidepressant
action based largely on electrophysiologic findings has
proved useful in predicting pharmacologic strategies that
improve the effect of SSRIs, pointing directly toward the
potential clinical application of 5-HT1A antagonists (i.e.,
pindolol) and α2-adrenergic antagonists (i.e., mirtazapine
and yohimbine). Nevertheless, persisting limitations of
this model include difficulty in accounting for multiple
phenomena: (1) there is continued presence of some laten-
cy of response that is observed in pindolol-SSRI combina-

tions even when dosed under optimal circumstances; (2)
paradigms that likely enhance 5-HT1A–mediated postsyn-
aptic neurotransmission, such as tryptophan plus MAOI
combinations, do not result in rapid antidepressant effects
but more consistently symptoms of nausea and involun-
tary clonic movements20; (3) remissions induced by desip-
ramine are not vulnerable to transient reversal by disrup-
tion of serotonergic function (via tryptophan depletion),
while remissions induced by SSRIs as well as MAOIs are
transiently reversed under such conditions. This latter
finding casts doubt on the clinical relevance of enhanced
serotonergic neurotransmission as a universal, critical fea-
ture of all antidepressant classes.

CATECHOLAMINE MECHANISMS OF
ANTIDEPRESSANT ACTION

Original catecholamine hypotheses of major depression
posited that some, if not all, depressions are associated
with an absolute or relative deficiency of catecholamines,
particularly norepinephrine, at functionally important ad-
renergic receptor sites in the brain21 and that antidepres-
sants work by enhancing catecholamine levels.21,22 The
available evidence included observations that antidepres-
sant agents bound specifically to catecholaminergic targets
and that medications which disrupted catecholaminergic
function (i.e., reserpine and methyldopa) were associated
with the emergence of clinical depression. Criticisms,
much analogous to those offered the original serotonin hy-
potheses of antidepressant action, can be applied here as
well.23,24 For example, disruption of catecholamine func-
tion via administration of α-methyl-paratyrosine (a potent
inhibitor of the rate limiting step in catecholamine synthe-
sis) does not significantly alter mood in never-depressed
control subjects.25,26 Additionally, depression that re-
sponded to SSRI treatment is not transiently reversed by
disruption of catecholaminergic function.27

Based on preclinical (electrophysiologic and neuro-
chemical) and clinical studies, refined models assert that
chronic antidepressant treatment is associated with dimin-
ished β-adrenergic–mediated neurotransmission28 and di-
minished β-adrenergic receptor sensitivity.4 Repeated ad-
ministration of all classes of antidepressant medications to
laboratory animals may decrease norepinephrine release,
as evidenced by decreased activity of the key enzyme in-
volved in catecholamine synthesis, tyrosine hydroxylase.
Furthermore, such medication administration is com-
monly associated with decreased β-adrenergic receptor
binding. Although compelling in the range of evidence,
this model has demonstrated limited clinical application.
For example, β-adrenergic antagonists (with the exception
of pindolol) do not enhance antidepressant activity,15 and
some researchers have even argued that it is associated
with an increased incidence of depression in patients
treated for hypertension.29
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Perhaps accounting for these discrepant phenomena,
Duman and colleagues30 have suggested that chronic anti-
depressant treatment results in enhanced “neurotransmis-
sion” as mediated by specific intracellular signaling
mechanisms (i.e., increased levels of cyclic adenosine
monophosphate [cAMP]). In this model, subsensitization
of β-adrenoceptors may represent a homeostatic response
to enhanced synaptic norepinephrine levels. In support of
this model, clinical trials have demonstrated that agents
which increase cAMP levels (i.e., phosphodiesterase in-
hibitors such as rolipram and papaverine) possess antide-
pressant activity.31,32

Overall, catecholamine and serotonin hypotheses of
antidepressant action are ultimately incomplete. Monoam-
inergic-related antidepressant medications may exert anti-
depressant properties via another, as yet unidentified,
downstream or intracellular system that may be highly
regulated by monoamines.

NMDA MODEL OF ANTIDEPRESSANT ACTIVITY

Although little direct evidence suggests that excitatory
amino acids, such as glutamate, are involved in the patho-
physiology of major depression, a growing literature sug-
gests the role of excretory amino acids in the mechanism
of antidepressant action. Multiple types of N-methyl-D-
aspartate (NMDA) antagonists have been demonstrated to
be effective in animal models of depression and in models
predictive of antidepressant action.33 In clinical investiga-
tions, the administration of NMDA antagonists to nonde-
pressed subjects has been associated with mild euphoria.34

Chronic, but not acute, administration of virtually all anti-
depressant medications has been shown to evoke specific
adaptations in NMDA receptors. These adaptations were
observed in 22 of 23 antidepressants tested, but not in
other types of psychotropic agents.35 Thus, this marker has
proved to be a more robust predictor of antidepressant
response than either the forced-swim test or cortical
β-adrenoceptor density down-regulation. Although there
is a lack of selective and suitable NMDA antagonists
available for clinical use, limited therapeutic studies sup-
port an NMDA-mediated model of antidepressant action.
Preliminary evidence from our group demonstrates that
subanesthetic doses of ketamine rapidly reduce symptoms
in unmedicated depressed patients. Strong preclinical sup-
port and intriguing preliminary trials justify further work
in the development of selective NMDA antagonists as
antidepressants.

NEUROPEPTIDE ANTAGONISTS IN
ANTIDEPRESSANT ACTION

Neuropeptides have long been identified as having
neurotransmitter-like and modulatory actions; however, a
clear understanding of their physiologic role in psychiatric

diseases has remained elusive. For example, substance P,
the first described neuropeptide,36 has not figured signifi-
cantly in affective disorders research. Based on empirical
observations, a substance P antagonist was observed to
have antidepressant activity and was subsequently tested
in depressed populations. Surprisingly, a substance P an-
tagonist has recently been demonstrated to have compa-
rable antidepressant efficacy to paroxetine, with both
agents testing superior to placebo.37 In preclinical models,
this agent was not associated with monoaminergic activi-
ties that are commonly found with virtually all approved
antidepressant medications. This serendipitous finding
may prove to be the beginning of a novel antidepressant
class and spur the development of other neuropeptide
analogs.

Well-characterized abnormalities of the hypothalamic-
pituitary-adrenal axis function in depressed subjects has
focused attention on the role of corticotrophin-releasing
hormone (CRH) in the pathophysiology of major depres-
sion and the mechanism of action of antidepressants. Ce-
rebrospinal fluid CRH levels are commonly elevated in
depressed populations,38 as well as in other psychiatric ill-
nesses. Although the significance of this elevation re-
mains unclear, intracerebroventricular application of
CRH agonists to animals evokes depression-like symp-
toms (anorexia, hyperarousal, decreased sexual behaviors,
and hypercortisolism). Furthermore, a host of preclinical
data suggest that antidepressant administration decreases
CRH transmission and sensitivity in laboratory animals
and reduces cerebrospinal fluid CRH in depressed pa-
tients.39 Several therapeutic studies indirectly support the
role of reduced hypothalamic-pituitary-adrenal axis and
CRH function in antidepressant action. For example, ste-
roid suppressant therapy (i.e., aminoglutethimide, metyra-
pone, and/or ketoconazole) has reduced depressive symp-
toms in medication-refractory patients.40 Availability of
nonpeptide CRH antagonists for clinical trials will allow
further testing of this model.

FOCUSING BEYOND THE RECEPTOR:
POSTRECEPTOR SIGNAL TRANSDUCTION

Given that monoamine systems have widespread dis-
tribution and potentially target similar neuronal sub-
strates, a common mechanism of antidepressant action
may involve effects on postsynaptic, intracellular signal
processing. Enhanced monoamine neurotransmission
evokes a cascade of intracellular events that ultimately af-
fect gene expression.30 Most classes of antidepressants
have been associated with elevated cAMP levels, which
are closely linked to the induction of multiple transcrip-
tion factors such as cAMP response element binding pro-
tein (CREB) in the hippocampus. Increased CREB ex-
pression leads to increased expression of multiple genes
and proteins, including brain-derived neurotrophic factor
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(BDNF). Emerging preclinical data suggest the relevance
of BDNF in the pathophysiology of depression and in the
mechanism of antidepressant treatments. Animal models
of depression have been associated with decreased BDNF
levels, and, conversely, intracerebroventricular applica-
tion of BDNF has antidepressant properties. Protective
properties of BDNF against stress or neurotoxin-induced
hippocampal atrophy are consonant with observations that
recurrent depression is associated with decreased hip-
pocampal volumes.41 Further focus on intracellular
mechanisms may implicate other transcription factors and
expressed genes that are relevant to the mechanism of ac-
tion of antidepressants. In this manner, a genetic-based
line of inquiry on the study of antidepressants has the ca-
pacity to implicate hitherto unsuspected and/or unknown
substrates in models of antidepressant action.

FUNCTIONAL NEUROANATOMY OF
ANTIDEPRESSANT ACTION

Over the past decade, a pattern of neuroimaging abnor-
malities in unmedicated depressed patients has implicated
a crude neurocircuitry of depression, and, conversely,
antidepressant action.42,43 Multiple studies utilizing
positron emission tomography (PET) or single photon
emission computed tomography (SPECT) techniques to
assess blood flow or metabolism have demonstrated
that unmedicated depressed patients, relative to never-
depressed control subjects, have increased activity in the
ventral prefrontal cortex and decreased activity in the dor-
sal prefrontal cortex. Other areas that have been impli-
cated, but less reliably so, include the amygdala, basal
ganglia structures, and the anterior cingulate. Treatment
response has been linked to normalization of dorsal and
ventral activities and may correlate with pretreatment an-
terior cingulate activity. Methodological and diagnostic
factors are thought to contribute to the variance of re-
ported findings.

Although these aforementioned brain regions are
highly regulated by input from monoamine and other neu-
rotransmitters, an emerging model suggests that the pa-
thology of depression may lay in specific anatomic sub-
strates as opposed to distributed neurochemical systems.
Until recently, there has been almost no capacity to exploit
this conception clinically in the treatment of depression.
The technique of transcranial magnetic stimulation (TMS)
allows for the application of magnetic fields sufficiently
strong to alter cortical firing patterns. In controlled trials,
TMS applied over the left dorsal frontal cortex has been
shown to significantly improve depressive symptoms
more than did sham treatment.44,45 These preliminary re-
sults have fueled enthusiastic efforts from multiple groups
to assess the efficacy of TMS in depression. Although the
anatomic focus of these first studies is consonant with im-
aging findings, the manner in which the repeated adminis-

tration of magnetic fields changes the electrophysiologic
characteristics of underlying neurons remains unclear.

CONCLUDING COMMENTS

Although immediate pharmacologic targets can be
identified for most somatic antidepressant treatments
(with notable exceptions of electroconvulsive therapy,
TMS, and phototherapy), elucidation of the critical
mechanistic steps leading to symptom relief has defied de-
cades of vigorous research. A search for a common mecha-
nism of action that is shared by all antidepressant classes
is plausible, albeit potentially unachievable, in that all suc-
cessful interventions seemingly render patients in qualita-
tively similar states of remission.

Perhaps the ultimate measure of model of antidepres-
sant action is its clinical power in suggesting improved
treatments. Over the past 3 decades, refinements in
monoamine-based conceptions have rendered novel treat-
ment regimens (e.g., pindolol and lithium). Nevertheless,
persisting clinical limitations in currently available antide-
pressant strategies call for a rational therapeutics based
upon models that extend beyond the monoamines.

Drug names: aminoglutethimide (Cytadren), desipramine (Norpramin
and others), fluoxetine (Prozac), fluvoxamine (Luvox), ketoconazole
(Nizoral), methyldopa (Aldomet and others), mirtazapine (Remeron),
paroxetine (Paxil), pindolol (Visken), reserpine (Serpasil and others),
yohimbine (Yocon and others).
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