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Psychedelics (Greek: “mind manifesting”), also referred to as 
hallucinogenic drugs, are a group of compounds that produce 
various (often profound) psychological effects characterized by 
altered states of perception, thoughts, feelings, and consciousness. 
Since the early 2000s, there has been a resurgence in clinical 
research into psychedelics with increasing interest recently among 
clinicians and patients to harness their therapeutic potential in 
treating psychiatric disorders. A review of the literature with a 
critical eye that may inform psychiatrists of the current state of 
the evidence is hence timely. This article is the first in a 2-part 
series1 on the psychopharmacology and therapeutic effects of 
psychedelics. In it, we provide a review of the psychopharmacology 
and neurobiological mechanisms underlying the use of 
psychedelic-assisted psychotherapy, with a focus on psilocybin, 
(±)-3,4-methylenedioxymethamphetamine (MDMA), lysergic 
acid diethylamide (LSD), and ayahuasca. While mescaline, a 
naturally occurring hallucinogen in peyote; salvinorin A, found in 
the plant Salvia divinorum; and ibogaine, an alkaloid found in the 
West African plant iboga, are other psychedelics with considerable 
therapeutic interest, the paucity of human clinical studies precluded 
their inclusion in this brief review. While there is no standard 
definition for “psychedelics,” these compounds produce profound 
alterations in the perception of reality and mystical experiences. 
Compounds such as ketamine, a dissociative anesthetic, are not 
typically included in this class.

Pharmacology
The “classical” psychedelics, consisting of indolamines 

(psilocybin), alkaloids (N,N-dimethyltryptamine [DMT], the 
active constituent contained in ayahuasca), and ergolines (LSD), 
act primarily via serotonin 5-HT2A receptor agonism. MDMA, a 
phenethylamine, acts via release of presynaptic serotonin and to a 
lesser extent norepinephrine and dopamine through interactions 
with the corresponding monoamine transporter, including 

trace amine-associated receptor 1 (TAAR1) and vesicular 
monoamine transporter 2 (VMAT2). These compounds have 
varied pharmacokinetics and pharmacodynamics2 (Table 1). 
Serotonergic hallucinogens produce “psychedelic” effects that 
are indistinguishable from each other, consistent with a shared 
primary mechanism of action.2 The typical effects include 
enhanced sociality, feelings of closeness to others, openness to new 
experiences, emotional empathy, trust, feelings of bliss, audiovisual 
synesthesia, derealization, depersonalization, profound mystical 
experiences characterized by feelings of boundlessness, enhanced 
introspection and occasionally anxiety, fear/panic, dysphoria, 
paranoia, and auditory hallucinations.9–11 MDMA, described as an 
“entactogen” (Greek: “touching within”; ie, increases empathy and 
feelings of closeness) and a psychostimulant (producing euphoria, 
anxiolysis, and a sense of inner peace), does not produce intense 
hallucinations as seen with classical psychedelics.7 Psychedelics 
are generally well tolerated at clinically relevant doses, although 
side effects are common (Table 2). In nonclinical/recreational 
settings, adverse psychiatric effects have been reported in 40% of 
users, with 7.6% reporting enduring psychological symptoms.12 
There are few pharmacokinetic drug interactions, but the short 
half-lives of psychedelics decrease the risk for accumulation 
even in the setting of metabolic inhibition. Of greater relevance 
are pharmacodynamic drug interactions, such as those with 
serotonergic drugs (eg, selective serotonin reuptake inhibitors, 
dextromethorphan), which may increase the risk for serotonin 
syndrome.

In animal studies, psychedelics elevate glutamate levels in 
the cortex, increase regionally specific gene expression of brain-
derived neurotrophic factor and immediate-early genes, and 
promote both synaptogenesis and neuroplasticity through a TrkB- 
and mTOR-dependent mechanism.13 Long-term administration of 
psychedelics has been shown to cause significant transcriptional 
changes that last long after stopping them.

Psilocybin
Psilocybin, derived from mushrooms belonging to the genus 

Psilocybe, and psilocin, its active metabolite, are indolamines. 
Recent studies have shown that psilocybin has effects on brain 
functional connectivity.14 Its effects include reducing negative 
affect and amygdala response to emotional faces at 1 week, with 
enduring changes in resting state functional connectivity (RSFC) 
at 1 month,15 along with reducing activity in the default mode 
network (DMN) (including the subgenual cingulate cortex) in 
healthy individuals16 and causing changes in synaptic plasticity.13 
Contrary to the finding in healthy individuals, psilocybin was 
associated with increased resting state connectivity within the 
DMN between the ventromedial prefrontal cortex and the bilateral 
inferior-lateral parietal cortex after 2 psilocybin treatments in 
treatment-resistant depression patients and was predictive of 
clinical response 5 weeks posttreatment.17
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LSD
First synthesized in 1938 by Albert Hofmann, LSD is an 

ergot alkaloid derivative that acts as a 5-HT2A partial agonist 
and 5-HT1A agonist with additional dopaminergic activity at 
moderate-high doses (75–200 µg).4 LSD, like other psychedelics, 
acutely increases plasma concentrations of cortisol, prolactin, 
oxytocin, and epinephrine.18 Neuroimaging studies show that LSD 
acutely increases global functional connectivity19 and reduces left 
amygdala and right medial prefrontal cortex reactivity to fearful 
faces.20 LSD’s subjective hallucinatory effects are associated with 
increased functional thalamic connectivity with the insula and the 
right fusiform gyrus.21 Similar to psilocybin, LSD decreases DMN 
integrity, which correlates with ratings of ego dissolution.22

Ayahuasca
Ayahuasca is the most popular name for an Amazonian 

decoction used in religious ceremonies prepared from the vine 

Banisteriopsis caapi (which contain β-carbolines such as harmine) 
and leaves of Psychotria viridis (which contains DMT).23 While 
harmine is a monoamine oxidase inhibitor that prevents peripheral 
metabolism and increases oral bioavailability of DMT, ayahuasca’s 
psychedelic effects are primarily due to DMT.24 Structurally 
similar to melatonin and serotonin, endogenous DMT and its 
metabolite, 5-OH DMT, are hypothesized to be responsible for 
dreams, creativity, and other mystical experiences.25 Interestingly, 
in animals, DMT has been shown to produce fear extinction and 
antidepressant effects with cellular and behavioral responses similar 
to ketamine.23

MDMA
Also known as “ecstasy,” MDMA’s exact mechanism as a 

psychotherapy adjunct for treating posttraumatic stress disorder 
is unknown, but its entactogenic effects may lower emotional 
barriers, dampen conditioned fear responses, and improve 

Table 1. Pharmacology

Pharmacodynamics Pharmacokinetics
Psilocybin (O-phosphoryl-4-hydroxy-N,N-dimethyltryptamine)
5-HT2A agonism3

Various other 5-HT receptors  
(eg −7, −2B, −1A autoreceptor, and −6 subtypes)3

Dephosphorylation to active metabolite psilocin by alkaline phosphatase and nonspecific 
esterases3

MAO, ADH, hydroxyindole oxidases3

Glucuronidation of metabolites3

Route PPB tmax Onset t1/2 Duration fe F
Oral 80%3 90 min 20–40 min 2.5 h 4–6 h 3%–10% 50%

LSD (lysergic acid diethylamide)
5-HT2A partial agonism4

TAAR-1 agonism
5-HT1A agonism, various other 5-HT receptors  

(−1B, 1D, −5A, −6, and −7)
Mixed DA agonism and antagonism4

CYP enzymes (unknown)4

Glucuronidation of metabolites4

Route PPB tmax Onset t1/2 Duration fe F
Oral 65%–90%4 1–2.5 h 30–45 min 2.9 h 9–12 h < 1% 100%

Ayahuasca (Banisteriopsis caapi and Psychotria viridis or Diplopterys cabrerana)
DMT: 5-HT2A agonism5

β-carbolines: 5-HT2A agonism, reversible MAOA-I5

Other effects:
DMT: TAAR and sigma-1 agonism
β-carbolines: multiple, including DAT inhibition and  

imidazoline I2 agonism5

Multiple chemical constituents, including the CYP2D6 substrate and β-carboline harmine 
and MAO substrate DMT5

Route PPB tmax Onset t1/2 Duration fe F
Orala NA 1–2 h5 20 min 1 h 4–5 h NA NA

Smoked 
DMT

NA 15 min 20–40 s 15 min 5–20 min NA NA

MDMA ((± )-3,4-methylenedioxymethamphetamine)
Intracellular sequestration of MDMA and reuptake inhibition: 

NET > SERT > DAT6

VMAT2 inhibition, TAAR-1 agonism
Weak, reversible MAOA-I8

H1, M1, α2 antagonism7

Nonlinear kinetics7

Major: CYP2D6, COMT7

Minor: CYP1A2/2B6/3A47

Sulfurylation and glucuronidation of metabolites7

Route PPB tmax Onset t1/2 Duration fe F
Oral 34%7 2 h 1–2 h 8–9 h 4–6 h 15% Good

aDMT is orally active only when coadministered with a MAO-I.
Abbreviations: 5-HT = serotonin (5-hydroxytryptamine), ADH = aldehyde dehydrogenase, COMT = catechol-O-methyltransferase, CYP = cytochrome P450, 

DAT = dopamine (DA) transporter, DMT = N,N-dimethyltryptamine, F = bioavailability, fe = fraction excreted unchanged in the urine, ki = inhibition constant, 
MAO-I = monoamine oxidase (MAO) inhibitor, NA = not available, NET = norepinephrine transporter, PPB = plasma protein binding, SERT = serotonin 
transporter, t1/2 = half-life in plasma, TAAR = trace amine associated receptor, tmax = time to maximum plasma levels after oral administration, 
VMAT = vesicular monoamine transporter.

Table 2. Common Adverse Drug Reactions

Drug Reactions
Psilocybin (O-phosphoryl-4-hydroxy-N,N-dimethyltryptamine)3 Mydriasis, mild hypertension and tachycardia, dizziness, nausea, anxiety, 

drowsiness, hyperreflexia, mild headache
LSD (lysergic acid diethylamide)4 Mydriasis, mild hypertension and tachycardia, hypophagia, dizziness, 

nausea, mild headache
Ayahuasca (Banisteriopsis caapi and Psychotria viridis or Diplopterys cabrerana)5 Mild hypertension, poorly tolerated gastrointestinal effects (nausea, 

vomiting, diarrhea)
MDMA ((±)-3,4-methylenedioxymethamphetamine)7 Mydriasis, mild hypertension and tachycardia, hypophagia, bruxism, 

fatigue, xerostomia, hyperthermia
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introspection to facilitate engagement with and extinction of 
traumatic memories during psychotherapy. Neuroimaging findings 
in healthy individuals include decreased neural activation of the left 
amygdala in response to angry vs neutral faces26; lower activation of 
the left anterior temporal lobe and greater activation of the superior 
frontal gyrus/dorsal medial prefrontal cortex, which correlated with 
worst autobiographical memories being perceived less negatively27; 
decreased RSFC between the prefrontal cortex and hippocampus; 
and increased RSFC between the hippocampus and amygdala.28

The Current State of the Field and Future Directions
While significant progress has been made in the understanding 

of the psychopharmacologic and neurobiological effects of 
psychedelics, several questions remain unanswered. For example, 
although 5-HT2A agonism has been shown to be important for the 
“psychedelic” effects of these compounds, it is unclear whether 
the therapeutic effects are also mediated via 5-HT2A receptors or 
by other mechanisms, such as 5-HT1, VMAT2, and TAAR-1. The 
understanding of the neurobiological effects of psychedelics is 
based on studies with small sample sizes in predominantly healthy 
adults. Replication and validation of these findings in larger studies 
in both normal and disease/pathological states are important. 
Furthermore, the mechanisms underlying the adverse outcomes 
observed in nonclinical settings remain to be understood.

The dose-response relationship between psychedelics and 
their therapeutic effects is not well established. Whether a 
linear dose-response relationship exists or if there is a narrow 
therapeutic window has yet to be determined. Additionally, while 
the therapeutic effects of psychedelics are thought to last up to 6 
months following a single exposure, the mechanisms underlying 
these long-lasting effects remain to be deciphered.

Conclusions
Classical serotonergic psychedelics have commonalities in their 

pharmacology, psychological effects, and mechanism of action via 
5-HT2A agonism. MDMA, however, has a distinct and complex 
neuroreceptor profile. Psychedelic and therapeutic effects may be 
mediated by more than one mechanism. The effects of psychedelics 
on brain functional connectivity and synaptic plasticity offer 
additional mechanisms that warrant further research.
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