Lewy Body Dementia: The Litmus Test for Neuroleptic Sensitivity and Extrapyramidal Symptoms

Andrius Baskys, M.D., Ph.D.

Lewy body dementia, also referred to as dementia with Lewy bodies (DBL), is a neurodegenerative disorder now considered to be the second most common cause of dementia after Alzheimer’s disease. Postmortem findings suggest that DBL accounts for 20% to 34% of all dementia cases and is often underdiagnosed. Salient features of DBL include fluctuations in cognition, perceptual abnormalities (e.g., visual hallucinations), and mild parkinsonism. Other symptoms include frequent falls, nighttime agitation, and depression. DBL symptomatology can be partly explained by the extensive destruction of dopaminergic and acetylcholinergic pathways caused by neurodegeneration. For this reason, DBL patients are especially vulnerable to the antidopaminergic and anticholinergic actions of most conventional antipsychotics, which makes treatment of the psychotic symptoms of DBL extremely difficult. Patients are particularly sensitive to developing extrapyramidal symptoms (EPS) and also to the potentially fatal complication of neuroleptic sensitivity, which affects ~50% of DBL patients. Therefore, a need exists for antipsychotic drugs with less propensity to induce EPS and reduced affinity for dopamine and acetylcholine receptors. Here we review studies evaluating the efficacy and tolerability of atypical antipsychotics for the treatment of psychoses associated with DBL. Olanzapine appears to be poorly tolerated, and risperidone has been associated with high risk of neuroleptic malignant syndrome. Clozapine use remains controversial because of its potent anticholinergic action and risk of agranulocytosis. Quetiapine has been shown to reduce psychiatric manifestations of DBL without causing neuroleptic sensitivity or increasing EPS. Hence, quetiapine is an attractive candidate for the treatment of psychoses in DBL and other dementias.

Lewy Body Dementia: Neuroleptic Sensitivity and EPS

Table 1. Differentiating Clinical and Neuropathologic Features of Dementia With Lewy Bodies, Parkinson’s Disease, and Alzheimer’s Disease

<table>
<thead>
<tr>
<th>Variable</th>
<th>Dementia With Lewy Bodies</th>
<th>Parkinson’s Disease</th>
<th>Alzheimer’s Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuronal loss in substantia nigra</td>
<td>Variable</td>
<td>Marked</td>
<td>Variable</td>
</tr>
<tr>
<td>Dementia type</td>
<td>Cortical</td>
<td>Subcortical</td>
<td>Cortical</td>
</tr>
<tr>
<td>Dementia course</td>
<td>Cortical onset usually before motor disturbance: fluctuating psychiatric features</td>
<td>Dementia present in a minority of patients</td>
<td>Usually a “pure” dementing illness</td>
</tr>
<tr>
<td>Motor disturbances</td>
<td>Mild parkinsonism; some rigidity; early gait disturbance; tremor uncommon</td>
<td>Classic movement disorder: tremor, rigidity, akinesia, postural changes</td>
<td>Late gait disturbance</td>
</tr>
<tr>
<td>Lewy bodies</td>
<td>Brainstem</td>
<td>+++</td>
<td>–</td>
</tr>
<tr>
<td>Neocortex</td>
<td>++</td>
<td>±</td>
<td>–</td>
</tr>
</tbody>
</table>

Adapted with permission from Kalra et al.2 Symbols: +++ = strong, + = moderate, ± = weak, – = absent.

Table 2. Equilibrium Dissociation Constants (nM) for Quetiapine and Other Antipsychotics at Human Brain Receptors

<table>
<thead>
<tr>
<th>Antipsychotic</th>
<th>D2</th>
<th>5-HT2A</th>
<th>H1</th>
<th>α1</th>
<th>α2</th>
<th>Muscarinic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haloperidol</td>
<td>2.6</td>
<td>61</td>
<td>260</td>
<td>17</td>
<td>600</td>
<td>>10000</td>
</tr>
<tr>
<td>Ziprasidone</td>
<td>2.6</td>
<td>0.12</td>
<td>4.6</td>
<td>2.6</td>
<td>154</td>
<td>2440</td>
</tr>
<tr>
<td>Risperidone</td>
<td>3.77</td>
<td>0.15</td>
<td>5.2</td>
<td>2.7</td>
<td>8</td>
<td>34000</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>20</td>
<td>1.48</td>
<td>0.087</td>
<td>44</td>
<td>280</td>
<td>36</td>
</tr>
<tr>
<td>Clozapine</td>
<td>210</td>
<td>2.59</td>
<td>3.1</td>
<td>6.8</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>Quetiapine</td>
<td>770</td>
<td>31</td>
<td>19</td>
<td>8</td>
<td>80</td>
<td>1400</td>
</tr>
</tbody>
</table>

Reprinted with permission from Richelson and Souder.9 Values are geometric means of at least 3 independent experiments. Lower values indicate higher affinity for a particular receptor and vice versa. Abbreviations: D = dopamine, 5-HT = serotonin, H = histamine.

DLB is a rapidly progressive yet variable disorder. While clinical diagnostic criteria for DLB continue to evolve, its prominent characteristics include a dementia syndrome associated with fluctuations in cognition, the presence of perceptual abnormalities, of which visual hallucinations are the most common, and mild parkinsonism. Other symptoms include frequent falls, nighttime agitation, rapid eye movement (REM) sleep behavior disorder, and mild depression. Hallucinations and delusions are present in approximately 90% of DLB patients and are leading causes of psychiatric referrals. In a study by Klatka et al.,5 hallucinations and depression were more frequent in DLB than in Alzheimer’s disease patients, while delusions were more common in DLB and Alzheimer’s disease patients than in Parkinson’s disease patients. Cognitive fluctuations in DLB patients are characterized by rapid alternations in the level of consciousness, e.g., unexplained loss of consciousness (which may produce falls), along with periods of lucidity, agitation, crying, or hallucinations. Variations in concentration, attention, and short- and medium-term memory are also common. The clinical presentation of DLB could, in part, be understood in light of extensive destruction of dopaminergic and acetylcholinergic neurotransmitter systems by the underlying pathologic process.6

Treating the psychotic symptoms of DLB is challenging. Extrapyramidal symptoms (EPS) (muscle rigidity and cogwheeling) are common side effects of conventional antipsychotics.7 In addition, administration of typical antipsychotics (e.g., haloperidol, thioridazine, trifluoperazine, fluphenixol, or sulpiride) to DLB patients often leads to development of severe sedation, immobility, rigidity, postural instability, falls, increased confusion, and inability to maintain adequate food and fluid intake, a syndrome often referred to as neuroleptic sensitivity.8 Neuroleptic sensitivity affects approximately 50% of DLB patients and represents a potentially fatal complication.8 Such extreme sensitivity may be partly explained by the antidopaminergic and anticholinergic profiles of most antipsychotics (Table 2). For instance, haloperidol and risperidone have a high affinity for dopamine-2 (D2) receptors and olanzapine and clozapine for cholinergic (muscarinic) receptors.9 Thus, there is a need for antipsychotic drugs with a significantly lowered affinity for dopamine and acetylcholine receptors and a reduced propensity to induce neuroleptic sensitivity.

This article reviews the available data on the efficacy and tolerability of atypical antipsychotics for the treatment of psychosis in patients with the closely related disorders of DLB and Parkinson’s disease.

MECHANISMS OF SENSITIVITY TO ANTIPSYCHOTICS IN DLB PATIENTS

DLB patients have an altered neurochemistry. They have a cholinergic deficit in the temporal neocortex,2,6 and reduced levels of choline acetyltransferase may contribute to the development of visual hallucinations, an unwanted effect noted with anticholinergic drugs.6 DLB patients have a greater cholinergic deficit and more functional cortical neurons than do Alzheimer’s disease patients, and may therefore benefit from cholinergic replacement.5

It is not known at present if early pharmacologic interventions can prevent the development or reduce the progression of psychotic symptoms typically associated with the underlying degenerative process. If psychotic symptoms are mild, pharmacologic intervention may not be necessary. However, when hallucinations or delusions
start to interfere with the patient’s daily life, then active
treatment is required. Cholinergic therapy is aimed at
 treating cognitive impairment, atypical antipsychotics are
used for hallucinations, and dopamine agonists such as
levodopa or carbidopa are used to improve parkinsonism.1

Centrally acting acetylcholinesterase inhibitors (e.g.,
rivastigmine, donepezil, galantamine) are thought to ame-
liorate the decreased cholinergic activity in the cortex and
may improve cognition, neuropsychiatric symptoms (i.e.,
hallucinations, mental fluctuations), and REM sleep be-

The toxic effects of typical or atypical antipsychotic
therapy are usually more severe and acute and may even
be irreversible in patients with DLB.8 Furthermore, sur-
vival time in DLB patients may be shortened when treated
with antipsychotics.6 Therefore, extra care when selecting
and administering any antipsychotic must be taken. The
dopaminergic blocking activity of typical antipsychotics,
together with the intrinsic parkinsonian features of DLB,
make these patients extremely sensitive to these agents.9

Possible explanations for this increased sensitivity
could be the relative loss of dopaminergic neurons in the
brains of DLB patients, particularly in the substantia
nigra,6 and the failure of postsynaptic striatal neurons to
up-regulate D2 receptors in response to a dopaminergic
deficit or D2-blocking drugs.10

Therefore, more selective agents, e.g., dopamine block-
ers that target the mesocorticolimbic system while sparing
the dopamine-deficient nigro-striatal pathway, may de-
crease the psychotic symptoms of DLB without worsening
EPS. For instance, clozapine has a high affinity, while dis-
playing a low propensity for EPS, for D2 receptors, which
concentrate in the limbic system and may improve cogni-
tive and emotional symptoms.11 In contrast to typical anti-
psychotics, which bind to D2 receptors with a high affinity,
the mode of action of atypical antipsychotics is thought
to involve low to moderate affinity for D2 receptors, asso-
ciated with a high affinity for serotonin-2 (5-HT2) recep-
tors.12 Positron emission tomography studies have shown
that quetiapine and clozapine can be displaced within
minutes from D2 receptors by physiologic concentrations
of dopamine, whereas displacement occurs much more
slowly with drugs such as haloperidol, chlorpromazine, or
olanzapine.12 It could be speculated that this “loose bind-
ing”13 to D2 receptors would therefore allow normal dopa-
inergic neurotransmission to take place and avoid the
neuroleptic sensitivity and movement disorders that are
likely in DLB patients treated with D2 receptor blockers.
The relatively low affinity of quetiapine for D2 receptors,
together with its low affinity for acetylcholine receptors,
may explain its placebo-like tendency to cause EPS.14

In DLB, dopamine levels are reduced in the caudate
region, but usually preserved on the temporal cortex.6
Together with preserved 5-HT levels, this results in a
monoaminergic/cholinergic imbalance that may be re-
sponsible for the development of visual hallucinations.6
Since dopamine blockers cause unacceptable morbidity
in DLB patients, selective 5-HT receptor antagonism may
play a role in treating the psychotic and affective symp-
toms of DLB and other psychoses. Serotonin receptors are
thought to be involved in the control of mood, cognition,
and motor behavior directly and through the modulation
of other receptors.15 In theory, a reduction of 5-HT
levels in the temporal cortex by a 5-HT antagonist would
help diminish the monoaminergic/cholinergic imbalance,
which in turn would reduce hallucinations. Of note, hallu-
cinogenic drugs such as lysergic acid diethylamide (LSD)
are partial 5-HT2 receptor agonists, while atypical antipsy-
chotic drugs are 5-HT2 receptor antagonists (Table 29,
thus indicating that drugs which preferentially block these
receptors may help reduce hallucinations. Consistent with
this finding, DLB patients experiencing hallucinations
have relatively preserved 5-HT2 receptors in the temporal
cortex compared with nonhallucinating DLB patients or
patients with Alzheimer’s disease.6

EFFICACY OF ATYPICAL ANTIPSYCHOTICS
FOR THE TREATMENT OF
PARKINSON’S DISEASE DEMENTIA

Psychotic symptoms have a negative impact on the
quality of life of Parkinson’s disease patients and their
caregivers. Also, they pose a major risk factor for perma-
nent nursing home placement.16

The main pathologic feature of Parkinson’s disease
is the degeneration of dopamine-producing cells in the
substantia nigra and the ventral tegmental area of the mid-

brain.16 There may also be varying degrees of degen-
eration of the central cholinergic, noradrenergic, and sero-
tonergic systems.17 The dopamine deficiency in the striatal
regions results in abnormal motor behavior, while in the
mesocorticolimbic system, it may cause psychomotor
retardation, anxiety or depression, and cognitive dys-
function. The loss of frontal cholinergic activity may also
contribute to delusions, hallucinations, and attentional
deficits. The cholinergic deficit in Parkinson’s disease
patients with dementia appears to be more prominent than
that in Alzheimer’s disease or DLB patients.17

In Parkinson’s disease, dementia is usually of the sub-
cortical type, and, until recently, Parkinson’s disease was
considered a classic movement disorder often treated
with dopaminergic drugs. However, psychotic symptoms
may be present in up to 25% of Parkinson’s disease pa-
tients and can be intrinsic to the disease (i.e., caused by
dopaminergic/cholinergic deficiencies) or extrinsic, in-
duced by anticholinergic or dopaminergic medications.17

As in DLB, psychotic symptoms in Parkinson’s disease
patients are difficult to treat because motor dysfunction
may be exacerbated by antipsychotic treatment, and anti-
cho

© COPYRIGHT 2004 PHYSICIANS POSTGRADUATE PRESS, INC. © COPYRIGHT 2004 PHYSICIANS POSTGRADUATE PRESS, INC.
acerbate psychotic symptoms. In particular, dopaminergic agents may induce dopamine hypersensitivity in the frontal and limbic dopamine projection regions.

Several studies have looked into using antipsychotics for the treatment of the dementia symptoms of Parkinson’s disease.

In an early double-blind, placebo-controlled trial, Wolters and colleagues examined the effect of clozapine in dopaminomimetic psychosis and parkinsonism in a group of 6 patients. Although clozapine prevented psychosis in 2 patients, 3 patients had to be withdrawn due to excessive sedation or incapacitating delirium. Two larger, double-blind studies of clozapine found that it alleviated psychosis without a decline in motor function. Two subsequent studies, one double-blind and one open-label, comparing clozapine versus olanzapine reported better efficacy of clozapine for psychotic symptoms but worsened EPS with olanzapine, and one trial was stopped because of intolerable EPS with olanzapine. In a 12-week, double-blind study of clozapine versus risperidone in 10 patients, similar relief of psychotic symptoms was achieved with both drugs, but EPS worsened with risperidone. A 12-week, open, pilot study in 17 patients reported efficacy and tolerability with risperidone.

Preliminary studies with quetiapine reported psychotic symptom relief and few EPS, and the results were supported by data from a 24-week, open-label study in which 29 patients with Parkinson’s disease–related psychosis showed significant improvements in cognitive function after quetiapine treatment. A subsequent retrospective study in 43 patients found that quetiapine improved psychosis in 81% of Parkinson’s disease patients presenting with or without dementia, although patients with dementia appeared to have a higher propensity for developing EPS.

Of interest, several reports have recently recommended clozapine and quetiapine as first-line agents for the treatment of Parkinson’s disease patients with psychosis. Due to the fact that clozapine can cause agranulocytosis and patients require regular hematological monitoring during clozapine therapy, other investigators prefer quetiapine over clozapine for the treatment of drug-induced psychosis in Parkinson’s disease patients.

Efficacy and Tolerability of Atypical Antipsychotics in DBL

Recently, a literature review of double-blind, placebo-controlled studies of antipsychotics for the treatment of psychosis and agitation in elderly patients with dementia reported that mean improvement rates were 61% with typical or atypical antipsychotics and 35% with placebo. Although additional controlled, large-scale studies are needed, several of the small-scale studies reviewed suggested that atypical antipsychotics such as clozapine, risperidone, olanzapine, and quetiapine may be able to treat psychoses associated with dementia. However, available data suggest that these drugs may not be equally beneficial to patients with DBL. Also, it is important to note that the antipsychotic doses required to ameliorate psychotic symptoms in DBL patients are usually substantially lower than are those required for other indications, and it is necessary to carefully titrate any antipsychotic medication, starting at a low dose. Dose increments should be small and made every 3 to 5 days.

Table 3 presents a summary of studies evaluating the efficacy and tolerability of atypical antipsychotics in patients with DBL, including case histories, open-label studies, and double-blind studies. The use of clozapine in DBL patients remains controversial because of its potent anticholinergic action and the risk of agranulocytosis, which requires frequent blood monitoring. Although 2 studies have reported efficacy and few EPS with clozapine in some patients it may irreversibly exacerbate psychotic symptoms or induce coma.

There have been a small number of studies showing the efficacy of risperidone either alone or in combination with levodopa for the treatment of DBL. However, the use of risperidone in DBL patients has been associated with a high risk of neuroleptic malignant syndrome and delirium. In a study of olanzapine for the treatment of DBL, 8 patients with psychotic and behavioral difficulties were given olanzapine, 2.5 to 7.5 mg/day, for 12 weeks and monitored for psychotic symptom improvement and EPS. It was found that 3 of 8 patients could not tolerate olanzapine even at the lowest doses available, 3 others could tolerate it but gained minimal benefit, and only 2 patients showed improvement. Although one subsequent case history described worsening of both psychotic symptoms and EPS after olanzapine treatment, a post hoc analysis of a subset of 29 patients who met criteria for Alzheimer’s dementia but were thought to meet criteria for DBL as well reported significant reductions in hallucinations and delusions without exacerbating EPS.

Unlike other typical or atypical agents, quetiapine has a placebo-level incidence of EPS across the wide dose range. Several small-scale, open-label or retrospective studies in DBL patients have found that quetiapine alleviates psychosis, agitation, and anxiety without exacerbating EPS or causing neuroleptic sensitivity (Table 3).

In a recent open-label study of 8 patients with DBL, it was shown that after 12 weeks of quetiapine treatment (≤150 mg/day), psychotic symptoms were significantly reduced, as measured by the Neuropsychiatric Inventory (NPI) scores and Brief Psychiatric Rating Scale (BPRS) scores. Importantly, the largest reductions were observed in the NPI hallucinations and nighttime behavior subscales. Quetiapine appeared to be well tolerated in this
Antipsychotic	Study	N	Duration	Study Design	Dose, mg/d	Efficacy	Tolerability	Abbreviations: BPRS = Brief Psychiatric Rating Scale, EPS = extrapyramidal symptoms, MMSE = Mini-Mental State Examination, NA = not applicable, NPI = Neuropsychiatric Inventory.	
------------------	------------------------	----	----------	--------------	------------	---	---		
Clozapine	Chacko et al33	1	6 months	Case report	75	Hallucinations stopped, mood improved	No worsening of orthostatic hypotension or EPS		
	Geroldi et al34	1	3 months	Case histories	37.5	Hallucinations decreased	No parkinsonian side effects		
	Burke et al35	2	1 dose or a few days	Case reports	6.5–12.5	Exacerbation of hallucinations, delusions, and paranoia, which persisted after clozapine discontinuation	No worsening of EPS		
	Sadek and Rockwood36	1	1 dose	Case report	175 (accidental)		Coma lasting 14 days		
	Allen et al37	3	28 days	Case histories	0.5–1.0	Improvement of psychotic and behavioral symptoms	Slight worsening of EPS in 1 patient		
	McKeith et al38	3	1–4 days	Case histories	0.5–1.0	NA	Extrapyramidal rigidity, shuffling gait		
	Ballard et al39	2	Few days	Case histories	0.25–5.00	1 patient had marked cognitive impairment	1 patient experienced oversedation, parkinsonism, confusion, and died within 3 weeks		
	Shiwach and Woods30	1	2 weeks	Case report	4	Psychotic symptom resolution	No worsening of EPS		
	Geizer and Ancill31	1	2 months	Case report	0.25 (plus donepezil, 5 mg)	Improvements in BPRS and MMSE scores	NA		
	Kato et al32	1	20 months	Case report	1 (plus L-dopa, 300–750 mg)	Psychotic symptom improvements	No worsening of motor or cognitive function		
	Sechi et al33	1	10 days	Case report	2.5	NA	Developed neuroleptic malignant syndrome	Stopped due to severe delirium	
	Morikawa and Kishimoto34	1	2 days	Case report	1	NA	Worsening of motor function		
	Olanzapine	Walker et al35	8	12 weeks	Open label	2.5–7.5	3 patients could not tolerate olanzapine		
	Baldwin and Avery34	1	Not stated	Case report	Not stated	Worsening of psychotic symptoms	No worsening of motor function		
	Cummings et al35	29 (placebo, N = 10; olanzapine, N = 19)	6 weeks	Post hoc analysis of subset of Alzheimer’s disease patients	Fixed dose, 5–15	Significant reduction in delusions and hallucinations in patients receiving 5–10 mg/d	No worsening of motor function		
	Parsa et al37	10	NA	Retrospective chart review	25–300 (plus donepezil, 5–10 mg)	Improvement in psychotic and behavioral symptoms	No worsening of motor function		
	Elliott38	9	12 weeks	Open label	12.5–275.0	Significant reductions in level of psychosis	No worsening of EPS or cognition		
	Takahashi et al39	9	8 weeks	Case histories	25–75	5 patients showed a reduction in psychotic symptoms (NPI scores)	No change in Simpson-Angus Scale scores; 2 patients reported somnolence and 1 patient had orthostatic hypotension		
	Fernandez et al40	11	NA	Retrospective chart review	69	10 patients had partial resolution of psychosis	Mild motor worsening in 3 patients		
	Baskys41,42	13	12 weeks	Open label	25–150	Significant reductions in psychotic symptoms	No worsening of motor function		
group of DLB patients and caused no worsening of EPS. In this study, however, 2 patients remained without improvement, and, although no explanation could be found, this may be due to the mental fluctuations typically associated with DLB.51

There are no data on ziprasidone and aripiprazole for the treatment of DLB patients at present. A recent 10-week, placebo-controlled study evaluated the efficacy and tolerability of aripiprazole, 2 to 15 mg/day, in 208 patients with Alzheimer’s disease.53 Although BPRS scores on the hallucinations and delusions subscales were significantly reduced compared with placebo, NPI psychosis subscale scores were similar between aripiprazole and placebo. More studies on these and other atypicals for the treatment of psychosis in DLB patients are desirable.

CONCLUSION

DLB and Parkinson’s disease are neurodegenerative disorders that share several clinical and neuropathologic features, including the presence of Lewy bodies in various brain regions, movement abnormalities, and dementia. Psychotic symptoms in DLB patients are particularly difficult to treat due to these patients’ extreme sensitivity to anticholinergic and antidopaminergic medications. Available data on atypical antipsychotics suggest that these agents may be useful for treating delusions, hallucinations, and agitation in DLB and Parkinson’s disease patients, and, as such, both clozapine and quetiapine are considered first choices in treating Parkinson’s disease-related psychosis.29 However, important differences in the tolerability of the various atypicals remain, and these differences will determine the usefulness of these agents for the treatment of DLB patients. For instance, olanzapine and risperidone are not well tolerated due to worsening of EPS and neuroleptic sensitivity, and the use of clozapine remains controversial because of the extra risks associated with this antipsychotic. Quetiapine is an attractive candidate for the treatment of psychoses associated with DLB due to its ability to relieve hallucinations and delusions and its low propensity for EPS. Currently, there are no data on ziprasidone and aripiprazole in this patient population.

More direct comparisons between the atypical agents, and in a larger number of patients, would be of interest to ascertain the best treatment strategies for psychoses associated with DLB as well as other dementias.

Drug names: aripiprazole (Abilify), carbidopa (Lodosyn), chlorpromazine (Thorazine, Sonazine, and others), clozapine (Clozaril and others), donepezil (Aricept), galantamine (Reminyl), haloperidol (Haldol and others), olanzapine (Zyprexa), quetiapine (Seroquel), risperidone (Risperdal), rivastigmine (Exelon), trifluoperazine (Stelazine and others), ziprasidone (Geodon).

Disclosure of off-label usage: The author has determined that, to the best of his knowledge, aripiprazole, chlorpromazine, clozapine, donepezil, galantamine, haloperidol, olanzapine, quetiapine, risperidone, rivastigmine, trifluoperazine, ziprasidone, flupenthixol, sulpiride, and thiouridine are not approved by the U.S. Food and Drug Administration for the treatment of Lewy body dementia.

REFERENCES

37. Davis P, Baskys A. Quetiapine treatment of hallucinations and agitation of Lewy body disease (LBD): linking the unique receptor profile and neuroprotective pathways. Presented at the 156th annual meeting of the American Psychiatric Association; May 17–22, 2003; San Francisco, Calif

38. De Deyn PP, Jeste D, Mintzer J. Aripiprazole in dementia of the Alzheimer’s type. Presented at the 16th annual meeting of the American Association for Geriatric Psychiatry; March 1–4, 2003; Honolulu, Hawaii