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Mechanism of Action of Agents Used in
Attention-Deficit/Hyperactivity Disorder

Timothy E. Wilens, M.D.

Several medications have been demonstrated effective in treating individuals with attention-
deficit/hyperactivity disorder (ADHD). There appears to be some commonality in the physiologic
mechanisms of action of these agents relevant to the treatment of ADHD. Either direct or indirect at-
tenuation of dopamine and norepinephrine neurotransmission appears related to both the stimulant
and nonstimulant medications efficacious in ADHD. However, important differences exist both be-
tween and within the specific classes of agents. Elucidating the various mechanisms of action of
ADHD medications may lead to better choices in matching potential response to the characteristics
(e.g., genotype) of individuals. (J Clin Psychiatry 2006;67[suppl 8]:32–37)
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ttention-deficit/hyperactivity disorder (ADHD) is
the most common neurobehavioral disorder af-A

fecting children and adolescents, with persistence into
adulthood.1 Neurobiological studies highlight that dys-
regulation of largely dopaminergic and noradrenergic
systems in the brain stem, striatum, cerebellum, and front-
cortical regions appear operant in ADHD. Multisite stud-
ies2 have highlighted the fundamental importance of medi-
cations in the management of ADHD. The medications
most commonly used for ADHD include the stimulants
methylphenidate (MPH) and amphetamine (AMPH), fol-
lowed by the nonstimulants, including atomoxetine, cate-
cholaminergic antidepressants, α-agonists, and more re-
cently described agents such as modafinil and nicotinic
agonists.

STIMULANTS

Efficacy for ADHD appears related to the pharmacoki-
netics of the medications, which in turn is related to their
pharmacodynamics.3–5 For example, using a simulated
laboratory classroom, Swanson et al.3,6 demonstrated that

an ascending release and blood concentration of MPH was
necessary to optimize ADHD responsivity throughout the
day. In contrast, a flat MPH dosing regimen lost about
40% of its efficacy in the afternoon.6

While not entirely sufficient, alteration in dopaminer-
gic and noradrenergic function appears necessary for clini-
cal efficacy of the stimulants in ADHD.7,8 Two major pro-
cesses are related to the concentration of dopamine (DA)
in the synapse. The more prominent and well-studied pro-
cess is the exocytic release of DA and other neurotransmit-
ters that is impulse-dependent, related largely to the potas-
sium gradient across the cell membrane.9 Through the
formation of an action potential by membrane depolariza-
tion, vesicular DA is released into the synapse by exocyto-
sis. In this manner, vesicular DA release is modulated by
presynaptic receptors, while being less sensitive to agents
affecting the transmembrane protein transporter.10 Con-
versely, carrier-mediated transport of catecholamines such
as DA appears operant in raising synaptic concentrations
of neurotransmitters secondary to AMPH.10,11 Although
less is known about parallel systems in the noradrenergic
system, data suggest that this system may be sensitive par-
ticularly to the various isomers of stimulants.

Release, uptake, and enzymatic inactivation of trans-
mitters are 3 fundamental processes underlying the mech-
anisms of action of stimulants at the neuronal level. Pre-
clinical studies have shown that the stimulants block the
reuptake of DA and NE into the presynaptic neuron and
that these drugs increase the release of these monoamines
into the extraneuronal space.9,10,12–15 Both the releasing
AMPH and uptake-inhibiting actions of MPH and AMPH
and related compounds are mediated by the catecholamine
uptake transporter, which has been studied for over 40
years.9–11,16 Although the DA transporter protein normally
moves DA from the synapse into the cell, in the presence
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of AMPH the direction of transport appears to be reversed,
with DA being released into the synapse.9–11 Amphetamine
is thought to bind to the DA transporter protein on the out-
side of the cell membrane, “blocking” DA reuptake back
into the cell.9 Amphetamine then moves into the cell, where
it exchanges with DA via the DA transporter protein.9,10

Cytoplasmic DA is “exchanged” from the interior of the
cell to outside the cell via the sodium-dependent transport
protein that can be blocked by DA reuptake inhibitors.9,10,16

In this manner, extracellular AMPH is exchanged with DA,
thus increasing the concentration of synaptic DA.

Methylphenidate, in contrast, primarily increases syn-
aptic DA through a more specific interaction with the DA
transporter protein, leading to specific DA reuptake block-
ade.9,17 The stimulants bind to the DA transporter protein,
with resultant inhibition of DA reuptake presynaptically.17

Whereas MPH binds to the DA transport protein in a man-
ner similar to other sympathomimetic amines, such as co-
caine,17,18 the slower uptake and clearance of MPH appear
to be related to differences in the instrasynaptic DA con-
centration and ultimately its lower abuse liability.18 The
rate of uptake into the striatum and the association and dis-
sociation from the DA transporter also affect the increase
and absolute amount of DA in the synaptic cleft.19 The de-
gree of reuptake inhibition, baseline stimulation, and the
environment (salience) appear to influence DA levels in
MPH-receiving individuals.20 Although apparently less im-
portant in the facilitation of neurotransmission by the
stimulants, there is evidence that stimulants may also di-
rectly affect DA presynaptic inhibitory autoreceptors.21

It is of interest that one study has shown that genetic
manipulation resulting in elimination of the DA transporter
protein (“knockout”) leads to a virtual behavioral and phar-
macologic insensitivity to MPH or cocaine in mice.22 In
addition, one protein, the SNAP 25 that is responsible for
action-potential–related migration of presynaptic catechol-
amine vesicles, when altered, results in a lack of MPH
responsivity.23 These findings support the importance of
the DA transporter protein and release mechanisms in me-
diating the pharmacologic and psychological response to
the MPH and AMPH classes of agents while also linking
response to a specific gene or gene combinations.

The role of the various enantiomers of MPH has been
studied over the past decade, with recent interest in
immediate and extended-release d-isomers of MPH.24

Methylphenidate as a secondary amine gives rise to 4
optical isomers: d- and l-threo and d- and l-erythro.25,26

Methylphenidate was originally produced as an 80%
d,l-erythro and 20% d,l-threo compound, but it was found
that the central stimulant activity resides in the threo
racemate; therefore, the erythro isomer was discontinued
from the standard preparation.26 One commercially avail-
able preparation, in both immediate- and extended-release
forms of MPH, includes only the d-MPH racemate.
Methylphenidate is metabolized predominately by hy-

drolysis in the intestinal wall before reaching systemic cir-
culation. In general, with the administration of racemic
MPH orally, substantially more d-MPH relative to l-MPH
is measurable in the serum,26–28 although transdermal appli-
cation of d,l-MPH results in appreciable concentration of
both the d- and l-isomer. There may be stereoselectivity, in-
cluding receptor site binding and its relationship to re-
sponse, in the compounds formed.25,27 In rats, the d-MPH
isomer showed greater induction of locomotor activity
and reuptake inhibition of labeled DA and NE than the
l-isomer.29,30 The d-isomer of MPH continues to harbor the
bulk of clinical efficacy of the compound, with the possi-
bility that l-MPH may compete with d-MPH for uptake and
striatal binding.25,29,30

A proposed model to explain the effects of stimulants in
ADHD includes the inhibitory influences of frontal cortical
activity, predominantly noradrenergic, acting on lower
(striatal) structures that are related to direct DA agonists.7

Contemporary support of this notion includes preclinical
work by Arnsten and Li.32 demonstrating important effects
of stimulants on prefrontal cortex (PFC).

Work indicates that the stimulants affect not only
DA but also NE.16,31 For instance, Markowitz et al.31 re-
cently reported high levels of in vitro binding of MPH
at the NE transporter that was, interestingly, preferential
for the d- versus l-isomer. Yet, whereas the striatum is
rich in DA transporter, a paucity of NE transporters exist
in the striatum proper.32 In contrast, the PFC, a brain
region consistently implicated in ADHD, is rich in NE.32

α2A-Adrenoceptors are located both presynaptically and
postsynaptically on NE neurons. As recently reviewed by
Arnsten and Li,32 DA works mainly via the D1 receptor,
which is rich in the PFC (and is stimulated by the stimu-
lants). Less is known about the distribution and role of the
D2–D4 receptors in the PFC, although the D4 receptor also
has affinity for NE. Rat models suggest that MPH at “lower
therapeutic doses” stimulates NE α2A, resulting in im-
proved frontal lobe functioning.33

Hence, while much is known about the mechanism of
action of stimulants, ongoing work will shed important in-
formation on physiologic and clinical differences between
stimulant classes and enantiomers, effects on both DA and
NE, and the pharmacokinetic and pharmacodynamic rela-
tionships of different stimulant preparations.

PREDOMINATELY NORADRENERGIC AGENTS

A dysregulation of the central noradrenergic network
has long been hypothesized to be an important aspect of the
pathophysiology of ADHD.34,35 The noradrenergic system
has been intimately associated with the modulation of
higher cortical functions including attention, alertness, and
vigilance. As reviewed by Solanto,36 preclinical and clini-
cal research has implicated the noradrenergic effects of
stimulants as important therapeutic mechanisms on en-
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hancing capacities such as delayed responding, working
memory, and attention. Furthermore, executive function
and noradrenergic activation are known to profoundly af-
fect the performance of attention, especially the mainte-
nance of arousal, the ability to sustain attention on a sub-
ject, particularly a “boring” one. Moreover, attention and
vigilance depend on adequate modulation by catechol-
amine neurotransmitters of PFC, cingulate and parietal cor-
tices, thalamus, striatum, and hippocampus, brain networks
with known high distribution of noradrenergic neurons.

Atomoxetine
The only nonstimulant agent approved by the U.S.

Food and Drug Administration for the treatment of ADHD
is atomoxetine. Atomoxetine has been evaluated and
shown effective in children, adolescents, and adults with
ADHD.37,38 Atomoxetine specifically inhibits presynaptic
NE reuptake, resulting similarly in increased synaptic
NE.39 Atomoxetine exhibits little effect on serotonin reup-
take and has minimal affinity for other receptors, neuro-
transmitters, or transporters.

Because of its effects on NE, it is speculated that
atomoxetine influences the posterior attentional systems
that may result in disengagement from stimuli and the ante-
rior attentional systems that include the analysis of data
and response preparation.39,40 Unfortunately, although data
on the relationship of DA to the DA transporter are abun-
dant, few data are available on ligands with specific bind-
ing to the noradrenergic presynaptic vesicular reuptake
protein. Despite the prominent effects of atomoxetine on
NE reuptake inhibition, preclinical data also show that ef-
fects on noradrenergic neurotransmission may have down-
stream effects on DA. For example, Bymaster et al.39 dem-
onstrated increases in DA in the PFC of rats treated with
atomoxetine. In contrast to stimulants, atomoxetine does
not increase DA availability in the nucleus accumbens (re-
sulting in lack of euphoria or abuse liability) and the stria-
tum (resulting in absence of motor or tic activity). Interest-
ingly, atomoxetine substantially increases DA in the PFC,
an action that may be related to the improvements in execu-
tive and other cognitive functioning. It is speculated that
stimulation of noradrenergic neuron cell bodies in the brain
stem may result in direct activation of the mesencephalic-
frontal connections subsequently affecting PFC activity.
Hence, it is no surprise that, given the redundancy in the
DA/NE systems, stimulation of NE results in increased
synaptic DA in the PFC. Moreover, our difficulty in imag-
ing the nuclei of the cell bodies originating in the
epencephalic areas of the brain stem has limited our under-
standing of direct stimulation of these areas on higher cor-
tical functions relative to ADHD.

ααααα-Agonists (Clonidine and Guanfacine)
The antihypertensive medication clonidine has achieved

an increasing prominence for the treatment of ADHD, tics,

and aggression,41 particularly in younger children. Guanfa-
cine has been demonstrated to be effective in ADHD plus
tics, with outcome reported in both ADHD and tics.42

Clonidine, an imidazoline derivative with α-adrenergic
agonist properties, has been primarily used in the treatment
of hypertension in adults. Clonidine has both central and
peripheral effects.43 Clonidine has high potency for central
autonomic pathways that is apparently related to its hyper-
tensive and antiwithdrawal properties. Clonidine affects
both α1 and α2 receptors. Both α1 and α2 receptor types are
located postsynaptically, with the α2 also being located pre-
synaptically and acting as an autoreceptor release modula-
tor. Of note, an older literature indicates only a presynaptic
location of the α2 receptor, whereas important findings of
the geographic location of the receptor, along with its im-
portant effects postsynaptically, have been elucidated. (For
review see Arnsten and Li32 and Scahill et al.42) Most ef-
fects of clonidine are centrally, as opposed to peripherally,
based. Clonidine appears to block the release of NE from
central catecholaminergic nerve terminals. Clonidine also
reduces the turnover rate of NE, largely through its effects
on the α2 receptors. At least 3 subtypes of α2 receptors rel-
evant to the mechanism of action of clonidine are evident:
α2A, α2B, and α2C. α2A Receptors are predominate in the
PFC, an important area of drug action relative to ADHD.44

Clonidine appears to have inhibitory effects on both
catecholamine release and postsynaptic activation. For in-
stance, preclinical animal work indicates that stimulation
of postsynaptic α2A receptors increases blood flow in the
PFC.33 Likewise, using clonidine appears to improve neu-
ropsychological functioning in the PFC as determined us-
ing simple neuropsychological tests.32

More recent work emphasizes that the effects of cloni-
dine appear to be related to baseline and “stress” effects
on the noradrenergic system.33 The inhibitory effects of clo-
nidine on neurotransmitter systems are generally mod-
ulatory; its effectiveness in inhibiting transmitter release
appears frequency dependent. The modulatory ability of
clonidine may allow for a more subtle degree of regulation.
For instance, at very low doses, clonidine may preferen-
tially stimulate inhibitory, presynaptic α2 autoreceptors in
the central nervous system.

Clonidine also interacts with a multitude of neurotrans-
mitter systems, including catecholamines, indolamines,
cholinergic (α2 receptors on parasympathetic neurons),
opioidergic, and amino acid systems. Such widespread
neurotransmission involvement may account for its diverse
action on drug withdrawal states, impulsivity, and cogni-
tion.41,43 The common link may be the mediation of its ac-
tions through stimulation of α2-adrenergic receptors.
Clonidine may also be involved in attenuation of the nor-
adrenergic imidazole receptor action.

The effects of guanfacine parallel those of clonidine
centrally. Guanfacine is a potent agonist of the α2A receptor
and as such mimics NE at α2A receptors. In turn, activation
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of the α2A receptor in preclinical studies results in height-
ened PFC blood flow and functioning (affecting working
memory and executive functioning)32 relevant to ADHD.
Interestingly, in contrast, using these same models,
agents that act as antagonists at the α2A receptor worsen
PFC functioning.

In summary, both clonidine and guanfacine share im-
portant features that modulate both presynaptic and post-
synaptic NE activity that appears related to basal adrener-
gic tone. Animal studies indicate that both agents induce
important physiologic effects on the PFC, resulting in im-
proved neuropsychological functioning relevant to the
pathophysiology and treatment of ADHD.

Bupropion
Bupropion is a novel aminoketone antidepressant

related to the phenylisopropylamines and pharmacologi-
cally distinct from available antidepressants.45 Preclinical
data indicate that the mechanism of action of bupropion
most likely involves reuptake inhibition of DA and NE.45

As part of its mechanism of action, bupropion has been
shown to potentiate dopaminergic neurotransmission.45

Clinical research and studies of the human DA, NE, and
serotonin transporters extend the preclinical findings and
confirm that bupropion is a dual NE and DA reuptake in-
hibitor in humans at clinically relevant doses, with few
data suggesting appreciable indoleamine involvement.

Tricyclic Antidepressants
The tricyclic antidepressants have been demonstrated

effective in studies of both children and adults with
ADHD. A rich literature indicates the effects of tricyclic
antidepressants in ADHD relative to their noradrenergic
properties. (For review, see Biederman and Spencer.35)
While the tertiary amines (imipramine and amitriptyline)
are more selective for the serotonin transporter than they
are for the NE transporter (ratio of the equilibrium disso-
ciation constants at human monoamine transporters
ranges from 8 to 27), the secondary amines (desipramine,
nortriptyline, and protriptyline) are more selective for the
NE transporter than they are for the serotonin transporter
(ratio of the equilibrium dissociation constants ranges
from 4 to 21).46 Although the tricyclic antidepressants
affect histaminergic and cholinergic receptors, it is as-
sumed that the activity of the tricyclic antidepressants in
ADHD stems from their actions on catecholamine reup-
take, particularly that of NE. Because the tricyclic antide-
pressants act on many of the same sites as the stimulants,
the pharmacodynamic effects of the tricyclic antidepres-
sants may be additive to those of the stimulants or may
act synergistically with the effects of stimulants.

Modafinil
Modafinil is a nonstimulant medication used in the

treatment of narcolepsy. Treatment with modafinil has

been found to result in clinically significant improvements
within the parameters commonly used to assess ADHD.47

Recently completed trials have shown efficacy in children
with ADHD.48,49

Interestingly, despite documented efficacy, the precise
mechanism or areas of action of modafinil in relation to
the treatment of ADHD is not fully understood. Modafinil
seems to exert one of its main effects on the hypothalamus
and attenuate both cholinergic and monoaminergic com-
ponents of the ascending reticular activating system. How-
ever, it does have effects on catecholaminergic neurotrans-
mission—in particular, dopaminergic and noradrenergic
systems—although whether these effects are related to
modafinil’s therapeutic effects in ADHD remains contro-
versial.48

Hou et al.50 found that modafinil has 4 distinct effects
on the brain. It inhibits γ-aminobutyric acid (GABA)–
producing neurons in the ventrolateral preoptic nucleus
(VLPO). In turn, the VLPO normally inhibits the locus ce-
ruleus (site of noradrenergic cell bodies) and the tube-
romammillary nucleus (histamine neurons) in a resting or
sleeping state. The resulting inhibition of inhibition acti-
vates noradrenergic neurons of the locus ceruleus and the
histamine neurons of the tuberomammillary nucleus, lead-
ing to a more “wakeful state.” In addition, the mesence-
phalic dopaminergic neurons are activated.

Wisor and Eriksson51 looked more closely at the effects
of modafinil on the dopaminergic system and found that
modafinil activates the postsynaptic α1-adrenergic recep-
tor by blocking the reuptake of DA in the cerebral cortex
and caudate. This activation of adrenergic systems occurs
in diffuse brain regions including the basal forebrain, cho-
linergic complex, cerebral cortex, and thalamus. In pre-
clinical studies, tuberomammillary neurons and neurons
of the prefornical area were very active and ventrolateral
preoptic neurons were inactive in the brains of rats after
modafinil had been administered to them.52 Additionally,
modafinil resulted in a dose-dependent increase of orexin,
which is involved in the activation of the locus ceruleus.52

Moreover, this effect may also be responsible for in-
creased histamine levels, subsequently increasing the
wakefulness associated with modafinil. The more indirect
effects on the catecholaminergic system have been specu-
lated to be related to the anti-ADHD effect without the
“classic” stimulant-like adverse events.53 Clearly, further
studies, such as ligand-based positron emission and func-
tional neuroimaging studies in individuals with ADHD,
will assist in highlighting a more precise mechanism of
action and identifying specific brain regions affected with
modafinil treatment.

Nicotinic Agents
Evidence has accumulated in recent years suggesting

that cholinergic dysregulation (in particular, nicotinic cho-
linergic systems) may play a role in the pathophysiology
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of ADHD. Independent lines of investigation have docu-
mented that ADHD is associated with an increased risk
and earlier age at onset of nicotine use and cigarette smok-
ing than in controls without ADHD,54 that maternal smok-
ing during pregnancy increases the risk for ADHD in
the offspring,55 and that in utero exposure to nicotine in
animals confers a heightened risk for an ADHD-like syn-
drome in the newborn.56 That nicotinic cholinergic dys-
regulation could play an important role in the patho-
physiology of ADHD is not surprising, considering that
animal models show that nicotinic activation enhances
dopaminergic and noradrenergic neurotransmission.57,58

It is recognized that cholinergic pathways are present in
the basal forebrain and that they project diffusely to the
cerebral cortex.59 Thus, pharmacologic enhancement of
the cholinergic system could improve a host of cognitive
processes, including ADHD and executive deficits. As re-
viewed by Rezvani and Levin,58 a substantial literature has
demonstrated an improvement in cognitive functioning
associated with nicotine administration in subjects without
ADHD. Furthermore, improved ADHD has been reported
in controlled trials of nicotine60 and nicotinic analogs.61,62

SUMMARY

In summary, commonalities exist in the mechanism
of action of the various agents used in ADHD. Attenuation
of central catecholaminergic neurotransmission appears
fundamental in the amelioration of ADHD symptoms.
Elucidating the various mechanisms of action of ADHD
medications will undoubtedly be of major assistance in
the future pharmacology of ADHD. Further specific
neuroimaging probes will enhance our understanding of
the medication-receptor binding characteristics, dynamics,
and relationship to outcome. Given our increasing knowl-
edge about pharmacogenomic relationships in ADHD, it
is entirely possible that practitioners will choose agents
based on a matching of the patient’s genotype and the
diverse physiologic mechanisms of action of the various
medications for ADHD.

Drug names: amphetamine (Adderall and others), atomoxetine
(Strattera), bupropion (Wellbutrin and others), clonidine (Catapres,
Duraclon, and others), desipramine (Norpramin and others), guanfacine
(Tenex and others), imipramine (Tofranil and others), methylphenidate
(Ritalin, Metadate, and others), modafinil (Provigil), nortriptyline
(Pamelor, Aventyl, and others), protriptyline (Vivactil).

Disclosure of off-label usage: The author has determined that, to the
best of his knowledge, bupropion, clonidine, desipramine, guanfacine,
imipramine, modafinil, nortriptyline, and protriptyline are not approved
by the U.S. Food and Drug Administration for the treatment of
attention-deficit/hyperactivity disorder.
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