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Are Two Antidepressant Mechanisms Better Than One?
Issues in Clinical Trial Design and Analysis
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The introduction of newer antidepressants that affect both serotonergic and noradrenergic neuro-
transmission has prompted the question of whether two antidepressant mechanisms of action are bet-
ter than one for the treatment of depression. Existing data do not provide a definitive answer. Whether
future studies provide the answer will depend largely on the quality of trial designs. Some design as-
pects are dictated by the nature of such a study (e.g., superiority vs. equivalence trial), and others are
somewhat more discretionary (e.g., assessment tools, statistical procedures). Issues in the design and
analysis of clinical trials comparing dual- and single-action antidepressants are discussed.

(J Clin Psychiatry 2004;65[suppl 4]:31–36)

T
enhancement of serotonin neurotransmission. Newer anti-
depressants combine a serotonergic mechanism of action
with a noradrenergic component and, consequently, have
come to be known as dual-action antidepressants. Some
research1–3 has suggested that dual-action agents are supe-
rior to those designed to affect a single neurotransmitter
system, and other research4,5 indicates little or no differ-
ence. Because there have been few prospective trials com-
paring SSRIs and dual-action antidepressants, the limited
evidence comes from meta-analyses of archival clinical
trial data. Well-designed randomized, controlled clinical
trials (RCT) are required to determine whether dual-action
agents provide any advantage relative to SSRIs.

One of the primary goals of the RCT design is to mini-
mize the bias in the estimate of the treatment effect. Does
the treatment work and, if so, what is the magnitude of the
effect? Several critical components of RCT design can be
configured to support this goal. First, type I error typically
is maintained at .05. Second, the trial must be designed
with sufficient statistical power. Third, the trial must be

designed in a way that is both feasible (e.g., does not re-
quire thousands of subjects) and applicable (i.e., includes
the patients that will be targeted for treatment with the
investigational agent). Decisions that affect how these
standards are represented include selection of the partici-
pants, comparison group(s), assessments, data analytic
techniques, and, with these choices in mind, sample size
requirements.

Two aspects of clinical trial design that minimize bias
in the estimate of the treatment effect are randomization
and double-blinding. There is little debate about the indis-
pensable nature of randomization and double-blinding for
evaluating efficacy, safety, and tolerability. There is cer-
tainly less consensus about many of the other issues in
RCT design that are discussed here. In fact, for some of
these issues related to RCT design, there may be no clear
answer.

DESIGN

Superiority, Equivalence, or
Non-Inferiority Clinical Trial

In designing a study to determine if two antidepressant
mechanisms are better than one, an initial consideration is
whether the trial should be configured to evaluate superi-
ority, equivalence, or non-inferiority of one treatment
compared with another. The field of psychopharmacology
characteristically relies on superiority trials, which are de-
signed to detect a treatment effect that is considered
clinically meaningful or an effect size that has been de-
scribed in the literature. In contrast, equivalence and non-
inferiority trials are guided by a margin of equivalence,
which is defined as a difference in outcome that is deemed
clinically trivial (e.g., a 1-point difference in the Hamilton
Rating Scale for Depression [HAM-D]).6 The margin of
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equivalence, which must be clearly defined in the RCT
protocol, necessarily is substantially smaller than the clini-
cally meaningful difference that might be used in the de-
sign of a superiority trial. Furthermore, equivalence trials
are designed with 2-sided equivalence margins, whereas a
1-sided margin is specified for non-inferiority trials. In or-
der to implement an equivalence or non-inferiority trial,
the magnitude of medication effect must be stable and
well-established in the literature, with consistent results
seen from one trial to the next. This consistency clearly
has not yet been achieved in the development of antide-
pressants. Furthermore, the trial being considered asks
the question “Are two mechanisms better than one?”
rather than “Is one mechanism worse than two?” or “Is one
mechanism the same as two?” Hence, a superiority trial is
appropriate.

Parallel vs. Crossover vs. Factorial Design
Another primary design question is whether a parallel

group, crossover, or factorial design is most appropriate.
The parallel group design, in which subjects are random-
ized to 1 of 2 or 3 treatment cells, is the approach typically
used in psychopharmacology trials. In contrast, the pri-
mary strength of the crossover design is that the subjects
serve as their own controls,7 although in most psycho-
pharmacology applications the carryover effect renders
this design unworkable. Consider an example of the carry-
over effect in a trial in which subjects are randomized
to a sequence of treatments, either AB or BA, where A
is the investigational agent and B is the comparator. If
a subject responds to the first treatment received in the
sequence, it becomes unclear how response rates or re-
ductions in the HAM-D can be evaluated in the second
treatment period, which is one reason why a crossover

design is incompatible with the example under
consideration here.

On the surface it seems that a factorial de-
sign has the potential to address the antidepres-
sant mechanism research question. The 2-by-2
factorial design in Figure 1 represents a struc-
ture for examining one mechanism versus an-
other. Each cell either includes an SSRI mech-
anism of action or does not, and each cell either
includes a serotonin-norepinephrine reuptake
inhibitor (SNRI) mechanism of action or does
not. The standard 2-factor analysis of variance
(ANOVA) compares the main effects and inter-
action of SSRI and SNRI mechanisms of ac-
tion based on the following null hypotheses:

SSRI main effect: Subjects who receive an
SSRI do not respond differently than those
who do not receive an SSRI.

SNRI main effect: Subjects who receive an
SNRI do not respond differently than those
who do not receive an SNRI.

SSRI-by-SNRI interaction: The effect of adding an
SNRI to placebo does not differ from that of adding an
SNRI to an SSRI.

None of these contrasts, however, correspond to the re-
search question: What is the effect of adding the second
mechanism of action on efficacy, safety, and tolerability?
Thus, instead of factorial ANOVA-type contrasts, each
single-mechanism agent must be compared with the dual-
mechanism agent in a parallel design (e.g., escitalopram
vs. venlafaxine, reboxetine vs. venlafaxine).

Placebo
Should a placebo control be included? Among other

features, placebo helps to calibrate a clinical trial. It pro-
vides valuable evidence about the implementation of the
trial, particularly the placebo response rate. In what kind
of clinical setting(s) was the trial conducted? Was it a
setting with 15% or 45% placebo response?

Placebo control also provides a context to test assay
sensitivity, which represents the degree to which a trial is
designed and implemented such that differences between
effective and ineffective agents would be detected. By
way of illustration, assume that the null hypothesis is not
rejected such that a single-mechanism agent does not look
different than a dual-mechanism agent. Failure to reject
the null hypothesis can mean one of two things: both treat-
ments are effective or neither is effective. The RCT data
cannot disentangle those possibilities. In contrast, in a
4-cell trial with 3 active agents and placebo, assay sensi-
tivity is demonstrated if there are differences between at
least 1 active agent and placebo. Care must be taken, how-
ever, with the interpretation of results when active agents
fail to separate from placebo: One may not conclude that
the active agent and the comparator are equivalent. One

Main effect of SSRI
H01: µSSRI+ = µSSRI�

Main effect of SNRI
H02: µSNRI+ = µSNRI�

Standard ANOVA-type contrasts:

Venlafaxine

Reboxetine

SNRI+SNRI�

SSRI�

SSRI+

Placebo

Escitalopram

Interaction: Add SNRI
H03: µReboxetine � µPlacebo =
µVenlafaxine � µEscitalopram

Figure 1. An Example of a 2 × 2 Factorial Design Comparing 2
Mechanisms of Action

Abbreviations: ANOVA = analysis of variance, SNRI = serotonin-norepinephrine
reuptake inhibitor, SSRI = selective serotonin reuptake inhibitor,  µ = population
mean.
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cost associated with the placebo-controlled design is that
recruitment can be more difficult due to ill patients who do
not wish to risk receiving placebo.

Sample Selection
How sample selection is defined for a given study has

implications for trial design and any conclusions that may
be drawn from the results. In designing a phase 4 trial
to compare single and dual mechanisms of action, it may
be tempting to import the inclusion and exclusion criteria
typically used in phase 3 trials. This is because a trial with
homogeneous subjects has less within-group variability
than a trial with more diverse subjects, and, therefore,
sample size requirements are reduced or, with a fixed
sample size, statistical power is increased. One feature
of a phase 4 trial, however, is the opportunity for more
inclusive/less exclusive subject selection. For instance,
such a trial could include subjects with psychiatric or other
medical comorbidity, or lower baseline severity (e.g.,
HAM-D of 17). The benefits include faster recruitment
and, at the end of the trial, the ability to generalize results
to a wider range of patients. The cost includes increased
within-cell variability and the consequent increase in
sample size requirements.

Measurement
Biostatistician Joseph L. Fleiss opened his text Design

and Analysis of Clinical Experiments8 by writing, “The
most elegant design of a clinical study will not overcome
the damage caused by unreliable or imprecise measure-
ment” (p. 1). He then asserted that high quality data are
at least as important as randomization or blinding. To ad-
here to these principles, careful consideration must be
given to the choice of assessments, the number of primary
efficacy measures, and the frequency of assessments, each
of which influences the sample size requirement.

Choice of assessments. Assessments should be se-
lected, in part, based on the psychometric properties of the
scales. Although the HAM-D may be the most widely used
severity assessment in depression studies, such popularity
is not necessarily indicative of superior test quality. In-
deed, it has been suggested that the lack of variation and
innovation in trial designs submitted to the U.S. Food
and Drug Administration (FDA) during the past 2 decades
may reflect an inclination to let previously successful
trials dictate the design of newer studies.9 The recently
developed GRID HAM-D expands on the HAM-D by rat-
ing both intensity and frequency of each HAM-D item10

and should prove to be a more reliable scale. There also
are other instruments available for consideration, such
as the Montgomery-Asberg Depression Rating Scale
(MADRS),11 which was designed to be sensitive to change
in a clinical trial, or the Inventory of Depressive Symp-
tomatology (IDS), a relative newcomer that already has
extensive psychometric evaluation supporting its use.12

One benefit of weighing psychometric properties when
selecting efficacy measures is that more reliable assess-
ments reduce sample size requirements13 because as the re-
liability of a scale increases, the within-group variability
decreases (i.e., there is less measurement error). With less
within-group variability, the between-group effect size
is larger. Accordingly, the sample size requirement is
reduced simply by carefully selecting and implementing
a more reliable efficacy measure. Consequently, the trial
costs less, takes less time to complete, and thus becomes
more feasible.

Frequency of assessments. The typical assessment fre-
quency in depression treatment studies is every 2 weeks,
albeit somewhat more frequently in the first weeks of a
trial. If one agent is hypothesized to have a faster onset of
action than another, the chance of detecting the effect is
greater with more frequent assessments,14 particularly at
the beginning of the study. The results of some trials15–17

suggest that such a strategy may be appropriate in a study
of whether two antidepressant mechanisms are better than
one.

Constructs to assess efficacy. The conventional ap-
proach to assessment in antidepressant trials is to measure
the severity of depressive symptoms. In a phase 4 study
comparing single and dual mechanisms of action, alternate
strategies may be considered. More than one efficacy mea-
sure could be used to compare two mechanisms of action,
particularly if the different assessments specifically target
symptoms that correspond to reductions expected with
each mechanism. For example, a symptom severity scale
might be most sensitive to the effects of an SSRI whereas
a scale measuring functional impairment might be more
sensitive to an SNRI. Accordingly, the study could be de-
signed to test whether a dual-mechanism agent is superior
on both dimensions by employing corresponding efficacy
measures. Alternatively, the primary efficacy measures
could include assessments of adverse events and symptom
severity.

Type I error adjustments. If more than one primary
efficacy measure is specified in the protocol, the FDA
requires that a type I error adjustment be incorporated into
the study and that the adjustment strategy also be specified
in the protocol. The need for adjustment applies only if the
protocol states that superiority on any one of the primary
efficacy measures provides evidence of efficacy. In con-
trast, if the protocol states that efficacy requires superiority
on every primary efficacy measure, no alpha adjustment is
required because the threshold is elevated by design.

The adjustment is required because the risk of type I
error increases with multiplicity (i.e., multiple testing).
Specifically, the experimentwise (EW) probability of type
I error increases with the number of statistical tests (k) and
is calculated: αΕω= 1 – (1 – α)k. For instance, if the alpha
level is set at .05 for each test, then the EW type I error rate
is .098 for 2 tests, .143 for 3 tests, and .185 for 4 tests.
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Hence, multiplicity increases the probability of falsely con-
cluding that an ineffective agent is efficacious unless the
alpha is adjusted.

The most common method of controlling for type I error
is the Bonferroni adjustment, which partitions the alpha
level evenly among the multiple primary efficacy measures
that are specified in the protocol. For example, if there are
2 primary efficacy measures and αΕω of .05 is sought, the
Bonferroni-adjusted alpha level would be .05/2 = .025
for the test of each efficacy measure. The Bonferroni ad-
justment controls type I error tightly when the null hy-
pothesis is true. For example, with this adjustment the EW
type I error rate for 2 statistical tests is maintained at
.05: αΕω= 1 – (1 – .025)2 = .05. Another appealing feature
of the Bonferroni adjustment is that it can be applied to nu-
merous statistical procedures (e.g., tests of binary, survival,
or continuous data) and combinations of those procedures.

Resistance to the Bonferroni adjustment typically stems
from the reduction in statistical power for each test, when
the null hypothesis is false. Yet, that is only a problem if the
sample size determination is based on an unadjusted alpha.
If, instead, the statistical power analyses incorporate the
Bonferroni-adjusted alpha level, statistical power can be
maintained. Table 1 provides examples of the sample size
requirements for statistical power of 0.80 with 2-tailed chi-
square tests for a range of response rates that are likely
in antidepressant trials, separately for alpha levels of .05
and .025. Based on these values, the multiplicity-adjusted
sample size is approximately 18% higher when a second
efficacy measure is included. Accordingly, given the FDA
requirement that RCT protocols state the primary efficacy
measure(s) and, if necessary, the alpha-adjustment strategy,
it is prudent also to specify a multiplicity-adjusted sample
size. In that way, a Bonferroni adjustment does not come at
the expense of statistical power when the null hypothesis is
false.

ANALYSIS

Data Analytic Procedures
The choice of a statistical procedure is determined by

the form of the efficacy measure and the number of assess-

ment times per subject. Moreover, in psychopharmacol-
ogy clinical trials, in which missing data are ubiquitous,
the statistical procedure must readily accommodate the
problem of missing data. The goal of minimizing bias in
the estimate of the treatment effect was discussed earlier.
Missing data are a vulnerable source of bias, particularly
with differential dropout across treatments. For instance,
in a study comparing single versus dual mechanisms of
action, an elevated likelihood of intolerable side effects in
one treatment could result in earlier dropout from that cell.
For that reason, the data analytic procedure must not com-
pletely exclude subjects with missing data.

Survival analysis is one approach that can include
subjects with differential follow-up times by comparing
treatments on the time until response. For example, the
Kaplan-Meier18 estimate represents the cumulative per-
centage of subjects in each group who have not responded
each week; its complement, therefore, is an estimate of the
proportion that has responded. A subject continues to con-
tribute to that estimate as long as he or she remains en-
rolled in the trial. A subject’s data are deemed censored at
the time of dropout, and an assumption of survival analy-
sis is that censoring is independent of outcome. One ad-
vantage of survival analysis is that there is no reason to
distinguish between last observation carried forward and
completer analyses. However, survival analysis was con-
ceived to examine the survival time until a terminal event,
an event that cannot change, such as death. Thus, an im-
plicit assumption of survival analysis is that once a subject
is classified a responder during the course of the trial, the
subject will not revert to partial or nonresponse status. De-
spite the appeal of survival analysis, this assumption is
one drawback to its use in psychopharmacology trials.

Mixed-effects models have gained popularity in the last
decade,19–22 particularly as software has become accessible
for mixed models.23–26 The models include both fixed
effects, such as treatment group, and random effects, such
as a subject-specific intercept or slope. One particularly
appealing feature of mixed-effects models is that subjects
who have missing data are not completely excluded; in-
stead, all available data are analyzed. A mixed-effects
model can include a varying number of observations per
subject (i.e., weekly assessments) and can account for
within-subject change over time. In an RCT, a treatment
by time interaction might be hypothesized, in that the ill-
ness severity is reduced more quickly in one group (i.e.,
the severity slopes for each group diverge over the course
of a trial).

There are several forms of mixed-effects models. For
example, mixed-effects linear regression models can
examine weekly severity ratings such as the HAM-D,
MADRS, or IDS.24 A mixed-effects logistic regression
model can be used for weekly ratings of a binary variable,
such as responder versus nonresponder status.23 This can
be expanded in a mixed-effects ordinal logistic regression

Table 1. Sample Size Requirements for Various Response
Rates

Sample Size

1 Efficacy 2 Efficacy
Response Rate Measure Measures

Group 1 Group 2 (α = .05) (α = .025)

0.30 0.40 376 451
0.30 0.50 103 123
0.40 0.50 408 489
0.40 0.60 107 128
0.50 0.60 408 489

Median increasea … 18%
aRepresents percentage increase for 2 efficacy measures versus 1.
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in which the dependent variable has ordinal categories
such as full responder versus partial responder versus non-
responder.23 Use of such a strategy prevents the HAM-D
from being arbitrarily dichotomized. Typically, responder
status is defined as a 17-item HAM-D < 8. A problem with
dichotomization is that it implicitly designates that a score
of 8 is more similar to a 30 than it is to a 6. By including
partial response, an intermediate position is adopted.

Sample Size Requirements
Mixed-effects models can provide more statistical

power with additional assessment times (up to a limit), or
they can reduce sample size requirements for a given
effect size and level of statistical power. In fact, the sample
size requirement is a function of both the between-group
differences and the stability of the assessments over the
course of the trial as quantified by the intraclass correla-
tion coefficient (ICC).

Examples of the sample size requirement per group for
mixed-effects logistic regression analysis are presented
for various numbers of postbaseline observations per sub-
ject and response rates likely to be seen in antidepressant
RCTs (Table 2). For comparative purposes, the corre-
sponding sample size requirements are also presented
for the more conventional chi-square test with the continu-
ity correction, in which there is only one observation per

subject (e.g., endpoint). The tabled estimates are based
on algorithms presented by Diggle et al.27 and Fleiss,28 re-
spectively. The median sample size reduction with each
additional observation is also presented. The examples as-
sume a 2-tailed alpha level of .05, statistical power of
0.80, and an ICC of 0.40. (Tables for additional ICCs are
presented in Leon, in press.29) For example, consider a
trial designed to detect response rates of 30% versus 50%
for single versus dual mechanism agents, respectively. If
the trial were designed to compare endpoint response rates
(i.e., 1 observation per subject) using a chi-square test, 103
subjects would be required per group. If instead a mixed-
effects logistic regression model examined 2 postbaseline
assessment points, the sample size requirement would
be reduced to 66 subjects per group and for 4 postbaseline
assessments, 52 subjects per group.

It should be noted that the ICC in the previous example
was chosen somewhat arbitrarily because ICCs for RCTs
of depression treatments are not well-established. Several
factors influence the ICC including duration of the trial,
inclusion and exclusion criteria, frequency of assessment,
reliability of the efficacy measure, effectiveness of the
agents, and the onset of action. With a lower ICC, that is,
as within-subject observations are less highly correlated,
sample size requirements are reduced in turn. Therefore, if
the ICC were actually 0.20, these would be fairly conser-
vative estimates in that they provide greater than 0.80
power; or stated differently, the sample size requirements
for statistical power of 0.80 would be smaller.

Another issue worth considering in designing a trial
for comparing mechanisms of action is the desired level
of statistical power. In studies funded by the National
Institute of Mental Health, power of 0.80 is typical, which
leaves a 20% chance of failing to identify an effective
drug. Industry-sponsored trials, particularly those unlikely
to be repeated, may consider increasing sample size re-
quirements for statistical power of 0.90. To detect group
differences in response rates ranging from approximately
10% to 30%, the sample size increases by about 30% for
power of 0.90 relative to that for power of 0.80. The corre-
sponding cost is worth serious consideration.

SUMMARY

Although prescription of dual-action antidepressants is
on the rise, the literature remains unclear on the issue of
whether these newer agents offer incremental benefit com-
pared with SSRIs. Well-designed trials are required to
determine if an antidepressant with dual mechanisms of
action is superior to a single mechanism agent. Some fea-
tures of the design are clear: randomized, double-blind,
parallel group, and superiority trial. Other issues are less
clear. The choice of assessment deserves careful consider-
ation. The HAM-D may have been the most commonly
used assessment tool in depression studies over the past

Table 2. Mixed-Effects Logistic Regression: Examples of
Sample Size Requirements (per group) for Various Numbers
of Postbaseline Assessment Timesa

Response Rate Number of

Investigational Postbaseline Assessment Times

Comparator Agent 1 (χ2)b 2 4 6 8

0.25 0.35 348 230 181 165 157
0.40 165 107 84 76 73
0.45 98 62 49 45 42
0.50 65 41 32 29 28
0.55 47 29 23 21 20
0.60 36 22 17 16 15

0.30 0.40 376 250 196 178 170
0.45 175 114 90 82 78
0.50 103 66 52 47 45
0.55 68 43 34 31 29
0.60 48 30 24 21 20

0.35 0.45 395 263 207 188 179
0.50 182 119 94 85 81
0.55 106 68 53 48 46
0.60 69 44 34 31 30

0.40 0.50 407 272 214 194 184
0.55 186 121 96 87 83
0.60 107 68 54 49 47

0.45 0.55 411 274 216 196 186
0.60 186 121 96 87 83

0.50 0.60 407 272 214 194 184

Median decreasec … 35% 21% 9% 5%
aAssumptions: intraclass correlation coefficient = .40, 2-tailed α = .05,

power = 0.80.
bFor 1 observation per subject, the chi-square test is typically used;

provided for comparison.
cRepresents percentage decrease from contiguous columns (e.g., 2 vs.

4 assessments).
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2 decades, but other efficacy measures have greater psy-
chometric support for their use. Furthermore, if more than
one primary efficacy measure is specified in the protocol,
the proposed sample size estimates should accommodate
the required alpha adjustment. If any compound is ex-
pected to exhibit faster onset of action, assessments should
be administered more frequently than biweekly. Finally,
mixed-effects models are well-suited for many psycho-
pharmacology trials because subjects who have missing
data can be readily included, and they can provide greater
statistical power or allow reduced sample sizes.

Drug names: escitalopram (Lexapro), venlafaxine (Effexor).
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