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for nearly a half century. Despite these significant
efforts, the cause remains unknown. This review will
discuss neurochemical aspects of the pathophysiology
of autism. Three primary areas will be highlighted, in-
cluding monoamines (serotonin [5-hydroxytryptamine,
5-HT], dopamine [DA], norepinephrine [NE]), glutamate/
γ-aminobutyric acid (GABA) systems, and neuropeptides.
Where data are available, peripheral and central neuro-
chemistry, genetics, neuroimaging, and postmortem find-
ings will be presented.

MONOAMINES

Serotonin
Serotonin neurons are widely distributed throughout

the mammalian brain. This neuronal system is one of
the earliest to develop, and the turnover rate of 5-HT is
higher in the immature mammalian brain than at any other
time in life. Serotonin plays a critical role as a growth fac-
tor in the immature brain, directing both proliferation and
maturation.1

Initial studies on the pathophysiology of autism fo-
cused on the 5-HT system. A recent chapter provided a
detailed review of the results from those investigations, in-
cluding peripheral and central neurochemistry, behavioral/
neuroendocrine challenges, genetics, and neuroimaging.2

We will provide a brief summary of those findings.
Schain and Freedman3 were the first to study whole

blood serotonin (WBS) in autism. Their sample included
3 groups: mildly retarded children, autistic children who
were severely retarded, and severely retarded children
without autism. Consistent unusual elevations of WBS
were found only in the autistic children, although the mean
WBS level of the other severely retarded group was higher
than that of the mildly retarded group. No differences were
found in presenting clinical symptoms between the 6 au-
tistic children with the highest WBS levels and those who
had normal levels. These results were largely replicated by
Ritvo and colleagues.4 In 1987, Anderson and others from
Yale published results from their laboratory and reviewed
and summarized data on WBS levels in autism to that
date.5 WBS concentrations were significantly higher in
drug-free autistic subjects than in normal controls, with
38% of the subjects determined to be “hyperserotonemic.”
Results from a subsequent study by McBride et al.6 led
the investigators to conclude that the prevalence of hy-
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perserotonemia in autism may have been previously over-
estimated because of failure to control for race and puber-
tal status.

In a large study by Leboyer et al.,7 WBS levels were
determined in 62 subjects with autism aged 3 to 23 years,
91 healthy controls aged 2 to 16 years, and 118 healthy
subjects over 16 years of age. Twenty-nine (48%) of
the 60 autistic subjects for whom there was a sample
met criteria for hyperserotonemia. Among controls, WBS
values diminished with age, whereas WBS levels among
autistic subjects appeared to be age-independent. In this
same study, 51% of mothers, 45% of fathers, and 87%
of siblings (older than 16 years) of autistic subjects had
hyperserotonemia.

In summarizing results from studies of WBS in autism,
many but not all investigations have found elevated WBS
levels in younger autistic subjects that tend to remain
higher than those of normal controls across the age range.
In contrast, most studies of normal subjects have demon-
strated an age-related decline in WBS levels with increas-
ing age. Some investigators have suggested that these re-
sults could be explained, in part, by abnormal maturational
processes of the 5-HT system in autistic subjects.5,7 Addi-
tional factors that may affect WBS levels include race, pu-
bertal status, and treatment with psychotropic medication.
Whether WBS levels will prove to be a useful quantitative
measure in the search for genetic susceptibility to autism
remains to be determined.

In general, studies of urinary excretion of 5-hydroxy-
indoleacetic acid (5-HIAA),8 the primary metabolite of
5-HT, and whole blood tryptophan concentrations5 have
not found significant differences between autistic subjects
and controls.

Studies of baseline levels of a measure of central 5-HT
function, cerebrospinal fluid (CSF) 5-HIAA, have found
no difference between children with autism and con-
trols.9–11 Two studies that utilized probenecid to block the
transport of 5-HIAA out of the CSF found similar12 or
slightly lower13 levels in autistic children compared with
nonautistic children with psychosis.

Behavioral/neuroendocrine challenge studies have been
conducted in autistic subjects. The immediate precursor of
5-HT, 5-hydroxytryptophan (5-HTP), was administered to
children with autism and adult normal control subjects.14,15

Prolactin response to 5-HTP was reduced in the children
with autism, suggesting diminished central 5-HT respon-
sivity. Blunted prolactin release was also found in response
to fenfluramine 60 mg given orally, in an investigation of 7
male young adults with autism and matched healthy con-
trols.16 Utilizing a different strategy, the acute tryptophan
depletion (ATD) paradigm was administered to 17 drug-
free adults with autism by McDougle and colleagues.17

The ATD resulted in a significant reduction in plasma free
and total tryptophan, whereas administration of sham
depletion (containing tryptophan) led to a significant in-

crease in these plasma measures. Eleven of the 17 subjects
showed a worsening of symptoms, including a significant
increase in whirling, flapping, pacing, banging, hitting
self, rocking, and toe walking, with ATD compared to sham
depletion. Another set of challenge studies involved the
5-HT1D receptor agonist sumatriptan, which has been
shown to increase growth hormone release. Eleven adults
with autism or Asperger’s disorder and 9 controls were
given subcutaneous sumatriptan and placebo separated by
1 week.18 The research subjects had a significantly greater
growth hormone response than controls, suggesting that a
hypersensitivity of the 5-HT1D receptor may exist. In a
related study, Hollander et al.19 reported that the severity of
repetitive behavior at baseline in these subjects was posi-
tively correlated with the growth hormone response to
sumatriptan. The same investigators recently found that the
oral administration of m-chlorophenylpiperazine (m-CPP)
resulted in a significant increase in repetitive behaviors and
prolactin in adults with autism or Asperger’s disorder in
comparison with controls.20

A number of investigations of genes involved in the
5-HT system have been conducted in autism. The 5-HT
transporter (5-HTT), the site of action of serotonin reup-
take inhibitors, has been considered a candidate gene for
autism. Cook et al.21 were the first to report the presence of
an association between the short variant of a functional
insertion-deletion polymorphism in the promoter region of
5-HTT (HTTLPR) and autism. In contrast, Klauck et al.22

identified preferential transmission of the long variant of
HTTLPR in their sample of autistic subjects. A number of
subsequent studies involving subjects from various coun-
tries have reported similar results or have been unable to
replicate either finding.2

Results from studies involving other genes contributing
to the 5-HT system, including the genes encoding the
5-HT7 receptor23 and the 5-HT2A receptor,24 respectively,
have not identified a significant association with autism.
Tryptophan 2,3 dioxygenase (TDO2) is the rate-limiting
enzyme in the catabolism of tryptophan, the precursor of
5-HT. A study by Nabi et al.25 demonstrated a significant
difference in the transmission of TDO2 haplotypes to autis-
tic subjects, suggesting the presence of a susceptibility mu-
tation in the TDO2 or a nearby gene. Recent investigations
have sought a relationship between a subset of autistic
subjects with prominent rigid-compulsive behaviors and
5-HTT with some preliminary encouraging results.26,27

Neuroimaging studies of the 5-HT system have
also been completed in autism. The first investigation uti-
lized positron emission tomography (PET) to assess the
tracer α-[11C]methyl-L-tryptophan (AMT) as an indicator
of 5-HT synthesis in 8 autistic children and 5 of their sib-
lings.28 Gross asymmetries of 5-HT synthesis in frontal
cortex, thalamus, and cerebellum were found in all 7 of the
autistic boys but not in the only female autistic subject.
Such asymmetries were not identified in the frontal cortex



Neurochemistry in the Pathophysiology of Autism

11J Clin Psychiatry 2005;66 (suppl 10)

or thalamus of the siblings, although 1 sibling showed in-
creased [11C]AMT accumulation in the right dentate gy-
rus. This boy had a history of calendar calculation, and
he ritualistically lined up his toys. The investigators con-
cluded that the focal abnormalities in [11C]AMT accumu-
lation may represent either aberrant innervation by 5-HT
terminals or altered function in anatomically normal path-
ways. A subsequent study by the same investigators,29

again using PET and [11C]AMT, found that for nonautistic
children, 5-HT synthesis capacity was more than 200% of
adult values until the age of 5 years and then declined to-
ward adult values. In autistic children, 5-HT synthesis ca-
pacity increased gradually between the ages of 2 years and
15 years to values 1.5 times adult normal values. It was
concluded that humans undergo a period of high brain
5-HT synthesis capacity during childhood, and that this
developmental process is disrupted in autistic children.

Dopamine
The monoamine DA is integral to motor and cognitive

functioning, as well as hormone release.30 A role for DA in
autism has been postulated, in part, based upon the benefi-
cial effects observed with the use of DA D2 receptor an-
tagonists in treating this population. This class of drugs
has been shown to effectively target symptoms commonly
exhibited by individuals with autism, such as aggression,
self-injurious behavior, and hyperactivity.31

To a large extent, neurochemical research in this area
has centered on the measurement of the major DA metab-
olite, homovanillic acid (HVA), in urine and plasma, as
well as CSF. When considering this research, it is impor-
tant to understand that only approximately 25% of urine
and plasma HVA appears to result from central DA
turnover, and that peripheral measures are primarily able
to identify only significant alterations in central DA
metabolism.32

In a study of catecholamine metabolism in 22 youths
with autism aged 5 to 16 years and controls matched for
age and sex, no significant difference in urinary DA was
found between groups.33 Minderaa and colleagues34 inves-
tigated plasma HVA and prolactin levels, as well as
urine HVA and DA excretion, in medicated and unmedi-
cated autistic subjects and unmedicated controls. The
authors found no significant differences between the au-
tistic and control groups, suggesting normal peripheral
indices of DA functioning. Martineau et al.35 measured
urine levels of DA and its derivatives, including HVA, 3-
methoxytyramine (3MT), and NE + epinephrine (EPI), in
156 children with autism, compared with age-matched
mentally retarded and normal controls. The levels were
found to decrease significantly with age in all 3 groups.
Significantly decreased levels of DA and HVA were found
in medicated versus unmedicated autistic youth. The au-
thors hypothesized that the results may be secondary to a
defect in maturation of monoaminergic systems in autism.

Several studies that measured CSF HVA levels have
been published. Gillberg and Svennerholm10 reported that
group mean levels of CSF HVA were elevated by approxi-
mately 50% in autistic children, compared to an age- and
sex-matched control group with neurologic disorders.
However, similar to previous findings by Cohen and col-
leagues,12,13 a controlled study of CSF monoamine effects
with fenfluramine treatment in 9 youths with autism re-
ported normal levels of CSF HVA.36 In addition, Narayan
and colleagues11 also found normal levels of CSF HVA in
their controlled study of 17 children with autism. The au-
thors reported that the results were consistent with the ma-
jority of earlier studies that did not find a group difference
in this metabolite in CSF.

Some genetic studies of DA involvement in autism have
been completed. Comings and colleagues37 suggested that
the A1 allele of the DA D2 receptor gene may be associated
with a number of behavioral disorders in which it may
act as a modifying gene. In their case-control study, the au-
thors examined a variety of neuropsychiatric disorders,
including autism, which are believed to involve defects in
DA neurotransmission. The prevalence of the A1 allele
was noted to be significantly increased in the group with
autism.

Another study examined the DA D1 and D5 receptor
genes in autism via restriction endonuclease fingerprint-
ing.38 One novel missense change (L88F) occurred in trans-
membrane domain II at a highly conserved amino acid in
all DA receptors, as well as in α1- and β-adrenergic recep-
tors. The mutation was identified in a Caucasian male pa-
tient with autism.

Robinson and colleagues39 examined the DA-β-
hydroxylase (DβH) gene as a candidate locus in 37 fami-
lies with 2 or more children with pervasive developmental
disorders (PDDs) using the affected sib-pair method. DβH
is an enzyme that catalyzes DA to NE. There was no in-
creased concordance for DβH alleles in affected siblings,
but the mothers had a higher frequency of alleles con-
taining a 19-base pair deletion. The authors hypothesized
that lowered maternal serum DβH activity may produce a
suboptimal uterine environment, which, in combination
with a genetic susceptibility, could result in PDDs in some
families.

Dopaminergic activity has also been investigated via
neuroimaging techniques in autism. Using the PET tracer
[18F]fluorodopa (FDOPA), Ernst and colleagues40 studied
14 children with autism (8 males; age, 10–17 years) and 10
controls (7 males; age, 12–17 years). In the autistic group,
regional FDOPA accumulation in the anterior medial pre-
frontal cortex was significantly reduced by 39%.

In another study employing PET, 6 children aged 3 to 5
years with autism were treated with 6R-L-erythro-5,6,7,8,-
tetrahydrobiopterin (R-BH4), a cofactor for tyrosine hy-
droxylase in the biosynthetic pathway of catecholamines.41

Study subjects were included only if the investigators
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noted a relatively low level of R-BH4 in the CSF. Prior to
treatment, PET revealed increased DA D2 receptor binding
in the caudate and putamen as a whole. After treatment,
a 10% decrease in DA D2 receptor binding was observed.
In addition, CSF levels of R-BH4 were found to be signifi-
cantly increased.

Norepinephrine
The neurotransmitter NE is associated with arousal,

memory, anxiety, and autonomic activity.30 Produced from
DA, NE is metabolized to vanillylmandelic acid (VMA) in
the periphery, and to 3-methoxy-4-hydroxyphenylglycol
(MHPG) in the central nervous system. Plasma and urine
levels of NE and its metabolites have been considered
to be generally well correlated with central functioning.42

However, research has also shown that estimates of the
proportion of MHPG in blood and urine originating in the
central nervous system, relative to that from the periphery,
have been uncertain, ranging from 10% to 60%.43

Regarding studies of blood measures of NE and its me-
tabolites, Lake et al.44 investigated levels of NE and DβH
in autistic and normal control subjects. The authors re-
corded a significantly higher level of blood NE in the
group with autism. In contrast to this finding, lower levels
of DβH were found in the autistic group, perhaps due to
the enzyme’s longer half-life.

A study of plasma MHPG in youth with autism and
normal controls recorded similar group means of 3.7
ng/mL and 3.2 ng/mL, respectively.45 Similarly, Minderaa
and colleagues46 found no significant difference in mean ±
SD plasma MHPG levels in unmedicated autistic (3.1 ±
0.6 ng/mL; N = 17), medicated autistic (3.3 ± 1.0 ng/mL;
N = 23), and normal control (3.2 ± 1.2 ng/mL; N = 20)
groups. In addition, no significant mean differences in lev-
els of MHPG, NE, and EPI were recorded between sub-
jects with autism and normal controls when evening and
overnight urines were examined. The authors suggested
that notable abnormalities in basal NE measures did not
appear to be present in autism.

As a whole, studies of CSF MHPG in autism have
found no significant differences compared to controls.
Young and colleagues47 reported a mean CSF MHPG con-
centration of 9 ng/mL in subjects with autism, a level com-
parable to that recorded in normal subjects. Another larger
study of 25 youths with autism and age- and sex-matched
controls also found similar values between groups.10

GLUTAMATE AND GABA

Glutamate, the primary excitatory amino acid neuro-
transmitter, is found in high concentrations throughout
the brain. It is thought to be crucial in neuronal plasticity
and higher cognitive functioning.48 Glutamate receptors
are divided into metabotropic and ionotropic types. The
ionotropic receptors are further classified into the follow-

ing 3 families: N-methyl-D-aspartate (NMDA), α-amino-
3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA),
and kainate. Several researchers have postulated that gluta-
mate dysfunction may play a role in autism.49,50

GABA, another amino acid neurotransmitter, is the pri-
mary inhibitory neurotransmitter in the brain. It is synthe-
sized from glutamate by glutamic acid decarboxylase
(GAD). Investigators have also hypothesized that GABA
may have an important role in the pathophysiology of au-
tism.51

Despite the important roles that these neurotransmitters
may play, there has been a relative paucity of literature di-
rectly examining glutamatergic or GABA function in au-
tism. This section will review neurochemical, genetic, and
postmortem studies concerning the function of these neu-
rotransmitters in autism.

Several reports have suggested that peripheral levels
of glutamate are elevated in the plasma of subjects with
autism and other PDDs. Aldred et al.52 collected blood
from 23 subjects aged 4 to 29 years with autism or
Asperger’s disorder and 55 of their family members (32
parents, 23 siblings) and measured amino acid concentra-
tions. They found that concentrations of glutamate, pheny-
lalanine, lysine, and asparagine were significantly higher
in both subjects and family members compared to age-
matched controls. Glutamine levels were significantly low-
er. Moreno-Fuenmayor et al.53 also measured amino acid
levels in 14 children with autism (all under 10 years) and
age- and sex-matched controls. They found that aspartate
was higher and glutamine and asparagine were lower in
subjects than in controls. However, another analysis is in
disagreement with these findings. Rolf et al.54 measured
amino acid content and GABA in platelet-rich plasma.
They found that aspartate and glutamate were decreased in
18 drug-free children aged 8 to 14 years with autism com-
pared to 14 age-matched healthy controls. GABA and glu-
tamine levels were also significantly lower. In contrast to
this, Dhossche et al.51 reported elevated plasma GABA lev-
els (measured by gas chromatography/mass spectrometry)
in a small, heterogeneous sample of 9 subjects aged 5 to
15 years with autism compared to 9 control subjects with
attention-deficit/hyperactivity disorder (ADHD). Most of
the autistic subjects were taking prescribed psychotropic or
anticonvulsant drugs, and all of the ADHD controls were
taking psychostimulants. In summary, studies reporting on
peripheral amino acid levels in autism present mixed re-
sults. Interpretation of these results is also difficult given
the small sample sizes, possible medication effects, and
different methodologies used.

A number of genetic studies of the glutamate and GABA
systems have been conducted in autism. Jamain et al.55

showed that the glutamate receptor ionotropic kainate 2
(GRIK2) or glutamate receptor 6 (GluR6) gene is in dis-
equilibrium with autism, and that an excess of maternal
transmission of the GRIK2 haplotype exists. Interestingly,
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maternal transmission disequilibrium for GRIK2 has
also been found by the same group in schizophrenia.56

More importantly, this finding was recently replicated by
Shuang et al.57 in 174 Chinese Han parent-offspring trios.
GRIK2 is located in the chromosome 6q21 region, which
has been identified as a potential autism susceptibility re-
gion by at least 1 genome-wide scan study.58

GAD1 encodes glutamic acid decarboxylase 67kDa
protein (GAD67), an enzyme important in the conversion
of glutamate to GABA. As a decarboxylase, it requires vi-
tamin B6 as a cofactor, which some believe may have effi-
cacy in autism.59 It also occurs on chromosome 2q, which
shows evidence for linkage in several genome-wide scans.
Rabionet et al.60 recently performed association studies on
several candidate genes in this region including GAD1.
They found no evidence for significant association be-
tween these genes and autism.

Ramoz et al.61 did find linkage for 2 single nucleotide
polymorphisms (SNPs) on another chromosome 2q gene,
SLC25A12. This gene encodes for the mitochondrial
aspartate/glutamate carrier. However, the report by Rabio-
net et al.60 referenced their own unpublished data, which
failed to replicate this finding in their sample.

Serajee et al.62 found suggestive evidence for linkage
disequilibrium between autism and the metabotropic glu-
tamate receptor 8 (GRM8) gene, which occurs on chromo-
some 7q, another region implicated in genome-wide scans.

Several lines of evidence implicate the 15q11-q13 chro-
mosome region as potentially harboring autism suscepti-
bility genes. This includes numerous reports suggesting
that duplications and other abnormalities in this region
may occur in as many as 3% of autistic individuals.63 This
genetic region has also been implicated in Prader-Willi
and Angelman syndromes, which share clinical features
with autism. Finally, this region contains several GABA
type A receptor subunit genes, which are candidates as au-
tism susceptibility genes.

Cook et al.64 tested several loci in this region for linkage
disequilibrium and were the first to report an association
between a marker (155CA-2) within the GABA receptor
subunit β-3 gene (GABRB3) and autism in a sample of
140 trios. Linkage disequilibrium for this marker has
been found in one other sample,65 but not others.66–69 How-
ever, Martin and colleagues68 did report linkage disequilib-
rium with another nearby marker (GABRB3) in this same
region.

Menold et al.70 examined 16 SNPs located within
GABRB3, GABRA5, and GABRG3 for linkage disequi-
librium using the Pedigree Disequilibrium Test. Two SNPs
located within the GABRG3 gene were in disequilibrium,
suggesting that the GABRG3 gene or a nearby gene
may contribute to genetic risk for autism. McCauley et
al.71 performed linkage disequilibrium mapping across a
region containing a cluster of GABA receptor subunit
genes on chromosome 15q12. Six markers individually,

across GABRB3 and GABRA5, and several haplotypes in-
clusive of those markers, demonstrated nominally signifi-
cant association.

In summary, there is emerging evidence that the GRIK2
gene may be involved in autism. There is conflicting evi-
dence as to the role of other genes that encode GABA re-
ceptor subunits and the mitochondrial aspartate/glutamate
carrier. Findings regarding GAD and other glutamate re-
ceptors await replication.

The glutamate and GABA systems have also been
evaluated in postmortem studies in autism. Purcell et al.72

used complementary DNA (cDNA) microarray technol-
ogy, additional measurements of messenger RNA (mRNA)
and protein levels, as well as receptor autoradiography to
study the cerebellum and hippocampus in a total of 10 per-
sons with autism and 23 matched controls. They found
several genes to be up-regulated in autism, most notably
the excitatory amino acid transporter 1 and the glutamate
receptor AMPA 1 (GluR1) genes. In addition, higher levels
of the corresponding proteins were found by Western blot-
ting. Finally, AMPA receptor density was decreased in
both the granule cell layer and molecular cell layer of the
cerebellum. Other notable findings were no significant
differences in GAD 1/2 protein levels (by Western blot-
ting) or NMDA receptor density (by autoradiography) in
the cerebellum.

Both GAD65 and GAD67 (2 isoforms of GAD) levels
were measured in postmortem cerebellar (N = 5) and pari-
etal cortices (N = 5) of persons with autism compared to
controls.73 In this study, GAD65 (but not GAD67) was sig-
nificantly lower in cerebellar cortices and GAD67 (but not
GAD65) was significantly reduced in parietal cortices. In
an autoradiographic study, Blatt et al.74 reported decreased
density of GABA receptors in hippocampal sections of
brain in cases with autism (N = 4) compared to controls
(N = 3). The density of 6 other receptors, 5-HT1A, 5-HT2,
cholinergic M1, high affinity choline uptake site, NMDA,
and kainate, did not differ significantly.

In summary, postmortem studies suggest that genes and
proteins involved with glutamate and GABA functioning
may be abnormal in autism. However, definitive conclu-
sions are difficult to make given the limited number of
studies and small sample sizes.

NEUROPEPTIDES

Oxytocin and Vasopressin
The 9 amino acid peptides oxytocin (OT) and vasopres-

sin (AVP) have been implicated in the social behavior of
mammals.75 These neuropeptides are synthesized in the
hypothalamus and secreted from the posterior pituitary
gland, exist solely in mammals, and differ at only 2 amino
acids.76 Receptors for these peptides have been found
throughout the limbic system, in the forebrain, and in brain
stem autonomic centers.77
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Animal models of OT and AVP involvement in regulat-
ing behavior have laid the groundwork for hypotheses that
these peptides may be involved in the pathophysiology as-
sociated with PDDs.78–80 OT knockout mice have been
found to have impaired social memory in the presence of
intact olfactory and general cognitive abilities.81 OT has
been found to promote pair bonding,75 and OT antagonist
infusion into the nucleus accumbens has inhibited the for-
mation of partner preference in female prairie voles.82 In
rats, AVP has been shown to facilitate social memory,76

and in male prairie voles, AVP has been found to promote
pair bonding.75

The possible role of OT in the etiology of the social
impairment of PDDs has been evaluated at epidemiologic,
neurochemical, and therapeutic levels. The hypothesis that
human neonatal exposure to OT (pitocin) during labor in-
duction may lead to long-term OT receptor down regula-
tion has been evaluated in 2 studies comparing affected
children and controls.83 A retrospective review of the birth
histories of 41 children with autism compared with the
records from 25 age- and IQ-matched controls found no
increased incidence of pitocin exposure in the children
with PDDs.84 A comparison of the birth records of 633 pre-
school children with language disorders, autism, or gener-
alized low IQ found similar rates of labor induction among
all groups evaluated.85

Plasma, but not central, OT levels have been evaluated
in a cohort of 30 autistic male children.86,87 This investiga-
tion compared the OT levels in patients with those of age-
matched but not IQ-matched control children. The first re-
port on this cohort noted a decreased level of plasma OT in
the autistic children.86 The second report using the same
cohort again reported lower OT levels in the children with
autism but also increased levels of OT extended form, a
precursor molecule with a C-terminal 3 amino acid exten-
sion.87 The authors hypothesized that a deficit in an un-
specified prohormone convertase may be responsible for
the low OT levels found in this sample of autistic children.
The finding of abnormal plasma OT levels in male autistic
children is interesting in light of the animal model of OT
impacting social attachment, which found a predominant
female predisposition to OT susceptibility.75

A single study has evaluated the intravenous adminis-
tration of OT in subjects with PDDs. Using a repeated in-
fusion model with each subject as his own control, 6 adults
with autism and 9 adults with Asperger’s disorder were
monitored for 6 different types of repetitive behavior in
60-minute intervals following infusion of OT or placebo
for up to 4 hours.88 This investigation reported no signifi-
cant main effect for drug and a significant reduction in
combined repetitive behaviors over time, but no signifi-
cant difference for any single repetitive behavior was re-
ported. No difference in response was noted between the
subjects with autism or Asperger’s disorder, and no social
measures were obtained during the challenge paradigm.

While OT has been evaluated on several levels in autis-
tic individuals, AVP has been primarily investigated at the
genetic level looking for polymorphisms in the gene cod-
ing for arginine vasopressin receptor 1A (AVPR1A).89,90

One analysis looking at 125 independent autistic probands
and 65 autism-affected sibling pair families concluded that
differences at the amino acid level in the AVPR1A gene
are not likely to confer genetic vulnerability to autism, but
that there may be some significant transmission disequi-
librium outside of the gene itself in the 5` flanking re-
gion.89 An analysis of 115 autism trios genotyped 2 poly-
morphisms from the 5` flanking region of the AVPR1A
gene and found nonsignificant transmission patterns.90 In-
terestingly, both studies found different 5` flanking region
polymorphisms. This difference was hypothesized to rep-
resent varying genetic backgrounds in the 2 samples, or
spurious false positive findings.90

Investigations of the social impairment associated with
PDDs have not yet found significant epidemiologic, neu-
rochemical, therapeutic, or genetic evidence to support a
primarily OT- and/or AVP-mediated etiology. Future work
may need to focus on central levels of OT and AVP, and/or
possibly focus more on how the sexually dimorphic ef-
fects of OT and AVP seen in lower mammals may translate
into differential effects between genders in individuals
with PDDs.

Opioids
Several observations of autistic children led to the early

evaluation of opioid dysregulation as a possible etiologic
explanation of PDDs. These have included elevated pain
threshold, little interest in social interactions, and episodes
of motor hyperactivity.91 These findings appeared to match
those seen in infant animals administered opiates.92 In one
way, the human opioid system relates to the hypothalamic-
pituitary-adrenal (HPA) axis and other neuropeptides be-
cause β-endorphin is excreted at the same time as cortico-
tropin (ACTH) from the anterior pituitary. This occurs
because these peptide hormones are initially part of the
same preprohormone.93

Evaluations of β-endorphin (and β-endorphin metabo-
lites in some cases) levels in the serum, CSF, and urine of
patients with PDDs compared to controls have yielded
conflicting results (see Tordjman et al.,94 for review). Ten
studies enrolling a total of 142 patients with PDDs have
evaluated serum β-endorphin levels, and the results repre-
sent a relatively equal mix of increased, decreased, or
similar β-endorphin levels found in the patients compared
to control subjects. In 2 investigations of CSF β-endorphin
levels in patients with PDDs, 1 reported increased and 1
reported decreased levels in affected patients.

Investigation of urinary opioid peptides has attempted
to look at whether inadequate processing of exogenous
opioids by the gastrointestinal tract may result in over-
absorption and finally urinary excretion of the peptides.
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Such an evaluation analyzed the urine of 10 children
with autism compared to 11 adult controls and found no
difference between groups.95 This study also specifically
evaluated dipeptidyl-peptidase in the serum of patients
and found no difference compared with controls. This en-
zyme is present at the intestinal brush border, and is ex-
pected to be involved in the cleaving of exogenous dietary
opioids. These findings have been challenged by those
who have presented earlier data pointing toward abnormal
urinary opioid levels in patients with PDDs.96 Disagree-
ment over the preparation of samples and the limits of de-
tection methods emerged among the different groups re-
porting contradictory results with regard to urinary
opioids in patients with PDDs.

The use of naltrexone, an opioid receptor antagonist,
has been evaluated in several open-label and placebo-
controlled trials in patients with PDDs having unknown,
elevated, or normal levels of serum β-endorphin.97 Again,
as in the studies looking at serum and CSF β-endorphin
levels, conflicting results on the efficacy of naltrexone ex-
ist, but most controlled studies suggest that the core symp-
toms of autism and associated maladaptive behavior are
not significantly affected by naltrexone.

Overall, the importance of endogenous or exogenous
opioid systems in patients with PDDs is subject to much
debate driven by contradictory evidence. This uncertainty
has led to the hypothesis that it may not be opioid levels
per se that may contribute to symptoms commonly seen in
PDDs, but the manner in which the endogenous opioid
system interacts with other neurotransmitter systems such
as the 5-HT, DA, NE, glutamate, or GABA systems.91 To
date, these potential multisystem interactions have not
been extensively explored. A final manner in which opioid
activity may impact theories of the pathophysiology of
PDDs could be derived from the knowledge that β-
endorphin has been found to inhibit oxytocin activity in
rats.98 It is clear that more research is needed to better un-
derstand how the endogenous opioid system interacts both
with traditional neurotransmitters and with other neu-
ropeptides with respect to the pathobiology and treatment
of PDDs.

Cortisol/ACTH
Levels of the anterior pituitary hormone ACTH and the

adrenal product cortisol have been evaluated in patients
with PDDs as a means to evaluate the HPA axis in these
subjects. As with opioids, conflicting results have been the
rule rather than the exception.94,99 In patients with PDDs,
plasma ACTH and cortisol, and cortisol levels in response
to the dexamethasone suppression test, have each been
found to be similar, lower, or elevated compared to control
subjects in different studies.94,99 Recently, investigators re-
ported elevated ACTH and low cortisol levels in 36 autis-
tic individuals, commenting that their results were “diffi-
cult to interpret” in light of conflicting data previously

reported.99 One report on the circadian rhythm of cortisol,
as measured by urinary secretion in 19 autistic patients
compared to control subjects, found no significant differ-
ence in the daily rhythm of cortisol secretion.100

While it is clear that a simple excess or deficit of ACTH
or cortisol is not present in the majority of patients with
PDDs, it is less clear how abnormally elevated or de-
creased levels can be further interpreted at an individual
patient level to ascribe any causal relationship between
these peptides and common PDD symptomatology.

Melatonin
It has been hypothesized that hypersecretion of melato-

nin from the pineal gland may be responsible for a cascade
of events impacting the HPA axis, thus possibly leading to
an “autistic-like” phenotype.101 This theory is based on ev-
idence (primarily from animal studies) that increased mel-
atonin can lead to decreased corticotropin-releasing hor-
mone (CRH) secretion from the hypothalamus, leading
to decreased pituitary ACTH and β-endorphin excretion
while at the same time causing, by an unknown mecha-
nism, an elevation in whole brain 5-HT.101 One study to
date102 has systematically evaluated levels of melatonin in
patients with PDDs. Ten patients with autism aged 16 to
30 years had melatonin levels drawn over a 24-hour pe-
riod, and these levels were compared to findings from con-
trol subjects. The authors reported no difference in mean
daily melatonin concentration, with only a trend toward a
lower amplitude of melatonin peak at night in autistic pa-
tients. The exact role of melatonin in patients with PDDs
remains to be fully characterized and understood. Little, if
any, evidence to date exists pointing to a primary melato-
nin dysfunction.

Secretin
While the role of secretin as a classical hormone in the

gastrointestinal system is well known, its role as a neu-
ropeptide is continuing to be defined.103 This potential
neuroactivity has been further investigated, in part, be-
cause of preliminary reports of effective secretin treatment
of social and communication impairment in patients with
PDDs.104 While controlled studies have failed to demon-
strate the efficacy of secretin in treating autistic symptom-
atology,104,105 recent evidence of the neuroactive properties
of secretin has become clear.103,106–108 In human and rat
samples108 and rat samples alone,106 secretin immunoreac-
tivity has been shown in Purkinje cells of the cerebel-
lum,106,108 central cerebellar nuclei,108 pyramidal cells of
the motor cortex,108 primary sensory neurons,106,108 and the
brainstem.106 Additionally, in separate work in rats, mRNA
coding for the secretin receptor has also been found in cer-
ebellar GABA interneurons.107 This work postulated that
in the cerebellum, secretin may be secreted by Purkinje
cells, then act as a retrograde messenger modulating
GABA activity. It is clear that secretin likely has neuroac-
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tive effects. Its potential contributions to the pathophysiol-
ogy of PDDs remains poorly understood. Based upon the
results of numerous placebo-controlled studies, however,
secretin has been determined to be an ineffective treatment
for autism.104,105

Thyroid Hormone
Thyroid-stimulating hormone (TSH), released by the

pituitary gland, has been evaluated in several patients with
autism. In 2 separate analyses, each with 10 affected chil-
dren compared with a similar number of adult controls, no
difference in TSH levels was found.102,109

Other Anterior Pituitary Hormones
Plasma growth hormone,99 prolactin,99,109 luteinizing

hormone,109 and follicle-stimulating hormone109 levels
have been shown to be no different between autistic indi-
viduals and controls in small studies.

Other Neuropeptides and Neurotrophins
A novel analysis of neuropeptides and neurotrophins

from frozen blood samples of neonates subsequently di-
agnosed with a PDD (N = 69), mental retardation without
autism (N = 54), cerebral palsy (N = 63), and normal con-
trol patients (N = 54) found significantly elevated levels
of several measured substances in the PDD and mental
retardation groups.110 Concentrations of neonatal vasoac-
tive intestinal peptide (VIP), calcitonin gene-related pep-
tide (CGRP), brain derived neurotrophic factor (BDNF),
and neurotrophin 4/5 were significantly higher in both the
PDD and mental retardation groups. No significant dif-
ferences between the PDD and mental retardation groups
were noted. Concentrations of substance P, pituitary ade-
nylate cyclase-activating polypeptide (PACAP), nerve
growth factor (NGF), and neurotrophin 3 were all similar
among all groups tested. In a different study, CSF levels of
the neurotrophic factor insulin-like growth factor-I were
found to be similar in an analysis of 11 autistic patients
and 11 age-matched “disabled” controls.111 While the re-
sults from the neonatal samples may not be specific to
PDD, their significance lies in pointing demonstrably to
how neuropeptide/neurotrophin dysregulation early in de-
velopment may set the brain on a course toward disor-
dered development, including, in some cases, a course to-
ward PDDs.112

CONCLUSION

This review has explored the available literature
on neurochemical contributions to the pathophysiology
of autism, with a focus on monoamines (5-HT, DA, NE),
glutamate/GABA systems, and neuropeptides. With re-
spect to monoamines, the majority of studies that have fo-
cused on basal measures of plasma, urine, and CSF have
been negative. The 1 exception is that of elevated WBS or

“hyperserotonemia,” which has been replicated in mul-
tiple investigations. Its underlying mechanism, however,
remains unclear. Behavioral challenges of monoaminergic
systems have primarily involved 5-HT. A number of sig-
nificant differences have been found between autistic sub-
jects (primarily adults) and controls, although most results
have not yet been replicated. Furthermore, results from
behavioral challenges are largely based on peripheral re-
sponses, with central effects often being inferred. Prelimi-
nary PET studies involving 5-HT and DA systems have
yielded potentially important findings. Concerns about ra-
diation exposure in youth may limit further studies utiliz-
ing currently available technology, although investiga-
tions in adults may be possible. Postmortem assessment of
monoaminergic involvement needs to be completed. En-
couraging results from preliminary genetic studies of the
glutamate and GABA systems are emerging. The use of
magnetic resonance spectroscopy (MRS) will allow for an
indirect assessment of these systems in the living brain.
Finally, results from animal studies indicate that the OT
and AVP systems are important, if not critical, for affilia-
tive behavior. It will be important to continue to incor-
porate genetic studies into ongoing neuroimaging and
postmortem investigations in each of the 3 areas of  neuro-
chemistry discussed in this review.

Drug names: naltrexone (Revia and others), probenecid (Probalan and
others), sumatriptan (Imitrex).

Disclosure of off-label usage: The authors have determined that, to the
best of their knowledge, naltrexone is not approved by the U.S. Food
and Drug Administration for the treatment of aggression in autism;
probenecid is not approved for use in cerebrospinal fluid studies in
autism; and sumatriptan, fenfluramine, and m-chlorophenylpiperazine
are not approved for use in behavioral challenge studies in autism.
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