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he discovery of imipramine, an effective norepi-
nephrine antidepressant, 4 decades ago and the sub-
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T
sequent exposition of the catecholamine hypothesis have
firmly established a role for norepinephrine (NE) in the
etiology and treatment of depression.1,2 It was originally
thought that a simple deficiency in NE was the basis for
some forms of depression. However, as our understanding
of the cellular mechanisms that underlie depression has
unfolded over the last decade, the role for NE has been
both expanded and modified. Medications that enhance
the function of the noradrenergic system are once again
coming to the forefront of clinical care. This rebirth of nor-
adrenergic agents is based not only on the increased under-
standing of the role of NE, but on the improved tolerability
and safety profiles of the current, more selective, norepi-
nephrine reuptake inhibitors (selective NRIs).

Recent studies have shown that a decrease in synaptic
NE is associated with depressive symptoms. Other investi-
gations have identified several adrenergic receptor sub-
types and delineated their role in the modulation of pre-
synaptic and postsynaptic neuronal function. However, it
has also been recognized that alterations in noradrenergic
neurotransmission alone cannot explain the etiology of

depression. Rather, abnormalities involving interactions
with other neurotransmitters—e.g., serotonin (5-HT), neu-
ropeptides, corticotropin-releasing hormone (CRH), and
other hormones—may be the basis for the depressed state.
Recently, the complex intracellular machinery that trans-
lates the postsynaptic effects of neurotransmitters into
long-term effects on protein synthesis and genomic effects
has begun to be unraveled. These breakthroughs have
come about because the advanced methodology to study
neurotransmitters has developed at a rapid pace. Matters
as complex as the plasticity of the nervous system are be-
ginning to be understood. Exciting new work has linked
NE to the very viability of neurons in critical brain struc-
tures. These new insights have provided exciting possibili-
ties for the development of novel medications for the treat-
ment of depression.

NEUROCHEMISTRY OF
THE NORADRENERGIC SYSTEM

The major noradrenergic nucleus in the brain is the lo-
cus ceruleus, which is located on the floor of the fourth
ventricle in the rostral pons.3 Noradrenergic neurons give
rise to diffuse axonal projections that innervate virtually
all areas of the brain. Projections from noradrenergic neu-
rons to the prefrontal cortex (an area involved in drive and
motivation) and the hippocampus (involved in learning
memory) may play a particularly important role in the type
of depressive symptoms expressed.

The locus ceruleus is very sensitive to both external en-
vironmental stimuli and changes in the body’s internal ho-
meostasis. Further, output from the locus ceruleus is in-
volved in flight-and-fight responses, regulation of levels
of arousal, and control of the sleep-wake cycle. In addi-
tion, noradrenergic neurons projecting from the locus ce-
ruleus modulate responses of the sympathetic nervous sys-
tem, including pulse rate, blood pressure, and danger
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signals for the organism. Therefore, it is not surprising that
abnormal activity of the noradrenergic system has been
implicated in the pathophysiology of both anxiety and de-
pression.3 Locus ceruleus neurons receive a number of in-
puts that provide information about the state of the body’s
internal environment. These inputs include other neuro-
transmitter systems, e.g., 5-HT, opioid, γ-aminobutyric
acid (GABA), dopamine, and glutamate. A number of pep-
tides influence the firing rate of these locus ceruleus neu-
rons, the most notable of which is CRH. Finally, the nor-
adrenergic system itself provides negative feedback to the
locus ceruleus neurons.3,4

The synthetic and metabolic pathway for catechol-
amines involves a series of enzymatic reactions (Figure 1).
The rate-limiting enzyme for the synthesis of both NE and
dopamine is tyrosine hydroxylase.

Receptors on noradrenergic neurons have been classi-
fied as being either α- or β-adrenergic subtypes. Each of
these subtypes has at least 2 secondary subtypes (α1 and
α2; β1, β2, and β3). Each of these subtypes has been cloned.5

Considering the rate of discovery, it is quite likely that other
forms of these receptors exist that have different functional
properties and regional distribution. α2-Adrenoceptors
(heteroreceptors) are also present on terminals of the
serotonergic neurons in the hippocampus. Electrophysio-
logic studies suggest these heteroreceptors exert a tonic in-
hibitory influence on the firing of serotonergic neurons.6

In summary, the noradrenergic system is closely related
to cortical regions that are involved in mood regulation
and cognitive arousal. It is also closely related to subcorti-
cal regions responsible for hormonal and somatic manifes-
tations of mood such as the hypothalamus, pituitary, and
peripheral sympathetic system.

NOREPINEPHRINE DEFICIENCY
IN DEPRESSION

The principal active metabolite of norepinephrine is
3-methoxy-4-hydroxyphenylglycol (MHPG). A consistent
relationship of altered MHPG levels in cerebral spinal
fluid, serum, or urine has not been found in patients with
depression.7 However, several studies have reported that
patients with bipolar depression have lower plasma and
urinary levels of both NE and MHPG compared with pa-
tients who have unipolar depression.8,9 It has also been re-
ported by several authors that the degree of bipolarity may
be associated with the extent of the deficiency of NE.1,9,10

Many different parameters have been assessed in trying
to uncover the basis for the link between norepinephrine
and depression. Researchers have looked at ratios of both
NE and epinephrine to their metabolites, total body cate-
cholamine turnover, ratios of NE to NE plus metabolites,
and epinephrine to epinephrine plus metabolites, as well as
discriminant functional analysis of 24-hour urinary cat-
echolamines and metabolites (depression [D]-type scores).

aSchematic model of a central noradrenergic neuron indicating sites
that may be involved in the etiology of depression and the mechanism
of antidepressant action. 1. Enzymatic synthesis: α-Methylparatyrosine
(AMPT) blocks tyrosine hydroxylase, the rate-limiting enzyme for NE
synthesis. 2. Storage: Reserpine interferes with the uptake-storage
mechanism of amine granules, and chronic treatment causes depletion
of catecholamines. 3. Metabolism and turnover: NE is metabolized by
monoamine oxidase (MAO) presynaptically and catechol-O-
methyltransferase (COMT) in the synapse; 3-methoxy-4-
hydroxyphenylglycol (MHPG) is the major metabolite. 4. Release:
Amphetamine increases net release of NE. 5. Autoreceptors are α2

type. Clonidine has agonist activity and yohimbine, antagonistic
activity; stimulation of autoreceptors leads to decrease in NE
transmission. 6. Reuptake site: NE has its action terminated by being
taken up into the presynaptic terminal. Desipramine is a selective
uptake inhibitor. 7. Postsynaptic receptors are α1, α2, β types;
clonidine, apomorphine, and desipramine are agonists at α2 receptor
sites. β-Receptor down-regulation is one of the most consistent effects
of long-term antidepressant treatment. 8. G proteins: Coupling proteins
translate the effects of postsynaptic receptor stimulation into effects on
the second messenger, e.g., cyclic adenosine monophosphate (cAMP)
system. 9. Second messenger system: Consists of cAMP, cyclic
guanosine monophosphate (cGMP), and the phosphatidylinositol (PI)
system; production is stimulated or inhibited by G proteins and they in
turn activate or inhibit protein kinases. 10. Protein kinases: The third
messenger system activates or inhibits phosphorylation of enzymes
involved in protein synthesis in the neuron and can affect synthesis and
distribution of receptors. 11. Genome: Protein kinases may also act by
activating the synthesis of proteins and enzymes directly from the
genetic code. 12. Ion channels are ultimately responsible for neuronal
firing; they can be directly activated via the G proteins or their activity
modified by the actions of protein kinases. 13. Neurotrophic factors:
Protein kinases may stimulate production of neurotrophic factors such
as neurotrophin-3 (NT-3), which can increase NE transmission and
increase the survival of NE neurons. 14. Modulatory factors: A number
of modulatory factors can affect NE transmission, including
neuropeptides such as corticotropin-releasing hormone (CRH),
somatomedin and neuropeptide Y, excitatory amino acids, e.g.,
glutamate, aspartate, and serotonin (5-HT).
Other abbreviations: ATP = adenosine triphosphate, GTP = guanosine
triphosphate, MAOI = MAO inhibitor, NRI = norepinephrine reuptake
inhibitor, PL-C = phospholipase C.

Figure 1. Role of Norepinephrine (NE) in the Etiology of
Depression and Mechanism of Action of Antidepressantsa
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These studies have shown that unipolar depressed patients
have a higher excretion of catecholamines compared with
control subjects or patients with bipolar depression.11

Several research groups have found that patients who
have a robust response to either tricyclic antidepressants
(TCAs) or selective serotonin reuptake inhibitors (SSRIs)
have reduced levels of urinary MHPG.12,13 In contrast,
with the monoamine oxidase inhibitor (MAOI) phenel-
zine, responders had the same decrease in MHPG as
nonresponders.14 Posttreatment reductions in MHPG fol-
lowing the administration of imipramine have not been as-
sociated with a treatment response.14 Of note is that de-
creases in MHPG with antidepressant treatment have been
associated with an increase in NE excretion.13 However,
changes in the levels of catecholamine metabolites are not
consistent, but vary with the duration of treatment.9

To evaluate the effects of acutely depleting catechol-
amines, patients with depression and healthy control sub-
jects were given alpha-methylparatyrosine (AMPT), a ty-
rosine hydroxylase inhibitor, and then monitored for the
emergence of symptoms. In healthy subjects, the chronic
administration of AMPT induced no depressive symp-
toms,15 whereas in bipolar depressed patients, AMPT was
noted to increase the symptoms of depression.16,17 However,
mood changes were not observed when nonmedicated pa-
tients with depression were given an AMPT challenge.18

Another study reported that medication-free euthymic sub-
jects with a remote history of depression experienced a re-
lapse of their depressive symptoms on administration of
AMPT.19

Miller and colleagues18 reported that administration of
AMPT reversed the antidepressant response of NRIs but
not that of SSRIs. Therefore, it appears that the specific
mechanism of antidepressant action of the NRIs is to in-
crease the level of NE.

Chronic antidepressant treatment has also been shown
to affect the synthesis of NE in the brain. Tyrosine hy-
droxylase activity or messenger RNA (mRNA) levels are
decreased by chronic treatment with most antidepressants
including the SSRI fluoxetine and the MAOI phenel-
zine.20–22 The significance of this finding is not clear, al-
though this may be an example of a homeostatic mecha-
nism in response to increased availability of NE in the
synapse.

Suicide victims are frequently reported as having been
depressed. To determine if there might be biological evi-
dence of change in suicide victims, Ordway23 examined
postmortem tissue taken from the locus ceruleus of suicide
victims and compared it with tissue from age-matched,
natural or accidental death control subjects. The authors
reported that levels of tyrosine hydroxylase and the den-
sity of α2-adrenoceptors (norepinephrine receptors) were
elevated in the tissue from suicide victims compared with
controls. Similar biological changes were observed in tis-
sue from the locus ceruleus of rats that were repeatedly

exposed either to the kind of environmental stimuli that
activates the locus ceruleus or to treatment with pharma-
cologic agents that deplete brain NE. The authors hypoth-
esized that persons who commit suicide have experienced
chronic activation of the locus ceruleus, which, in turn, re-
sults in the depletion of synaptic NE and compensatory
changes in tyrosine hydroxylase levels in noradrenergic
neurons.

One possible mechanism that may explain the biologi-
cal changes is an increase in CRH production, which in
turn leads to an increased turnover of NE in the locus ceru-
leus. Under such a scheme, chronically elevated levels of
CRH would lead to increased NE turnover and ultimately
NE depletion.24,25 CRH antagonists such as alpha human
corticotropin-releasing hormone could decrease this effect
and prevent the emergence of depression.26

In summary, NE deficiency has been shown to be asso-
ciated with depression. A deficiency in norepinephrine
could arise from an intrinsic abnormality of production
and release or from a secondary depletion, resulting from a
chronic stimulation of the NE system (e.g., induced by
chronic stress). Medications that increase NE availability
such as the NRIs and MAOIs, therefore, are potentially the
most effective antidepressants available for the treatment
of depression.

NORADRENERGIC RECEPTOR DYSFUNCTION
IN DEPRESSION

Besides NE deficiency, an abnormality in NE neuro-
transmission can also arise from changes in postsynaptic
NE receptor sensitivity. Different hypotheses have been
proposed along these lines.

Postsynaptic α2 Receptor Down-Regulation
Another biological change that has been observed in

depressed nonmedicated patients compared with healthy
controls of a similar age is an abnormal growth hormone
(GH) response to the administration of clonidine.27 The
phenomenon has been shown to be mediated through post-
synaptic α2 receptors and is reported to be unaffected by
antidepressant treatment.28 However, a challenge with
a number of different pharmacologic agents (e.g., the
serotonergic agent m-chlorophenylpiperazine [m-CPP])
appears to result in abnormal GH responses.29 Therefore, it
may be that a blunted GH response stems from an intrinsic
abnormality in the GH system in depression. Long-term
antidepressant treatment with desipramine, amitriptyline,
clorgyline, trazodone, or mianserin30–34 does not reverse
the blunted GH response to clonidine in depression; this is
not the case for lithium.35 Several authors have found a
blunted neuroendocrine response to desipramine in de-
pression mediated via postsynaptic α2 receptors.36,37 When
the α2 receptors on platelets of patients with depression
are examined, the findings are inconsistent. Some studies
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have shown an increased number and greater sensitivity of
α2 receptors, while others have not.38–40 Recent studies of
tissue from the locus ceruleus region of suicide victims
have shown an increased density of α2 receptors compared
with controls.23 A change in the density and responsivity of
the α2 receptors may be present in depression, a phenom-
enon that may be secondary to a NE deficiency.

Presynaptic α2 Receptor Dysfunction
The effects of clonidine on blood pressure, pulse rate,

and MHPG secretion have not been found to be con-
sistently different between patients with depression and
controls, leading most authors to the conclusion that pre-
synaptic α2 function remains intact in depression.41 Stud-
ies with yohimbine, an α2-adrenergic receptor antagonist,
suggest an increased sensitivity of the presynaptic α2 re-
ceptors in depression. This finding contradicts the results
from the clonidine challenge studies. Long-term treatment
with desipramine and amitriptyline,7,27,30,42 but not trazo-
done or mianserin,32,33 decreases presynaptic α2 receptor
function. This decrease is likely to be secondary to a ho-
meostatic response to an increase in synaptic NE.

α1 Receptor Up-Regulation
Neurophysiologic studies have suggested that antide-

pressants may work by increasing postsynaptic α1 adren-
ergic responsivity.43–46 This hypothesis has not been fully
explored in clinical studies.

β-Adrenergic Receptor Down-Regulation
Postsynaptic β-adrenergic receptor down-regulation is

the most consistent and robust long-term effect of most
antidepressant agents, including electroconvulsive therapy
(ECT).42,47,48 However, weak or no effects on down-
regulation have been noted for mianserin, bupropion, and
maprotiline.49,50 Many agents that cause down-regulation
of β-adrenergic receptors, e.g., yohimbine, are not effica-
cious in augmenting the effects of NRIs.51 Propranolol, a
β-adrenergic receptor antagonist, has been associated with
an increased incidence of depression.52 Conversely, thy-
roid hormone, which up-regulates β-receptor function, is
an important augmenting agent in the treatment of depres-
sion with standard antidepressant drugs.53,54 Therefore,
β-adrenergic receptor down-regulation is considered a ho-
meostatic response to the action of antidepressant drugs
rather than their mechanism of action. Prolonged stimula-
tion of β-adrenergic receptors can lead to adaptations in
the intracellular signal transduction pathways leading to
changes in receptor expression, phosphorylation, and/or
subcellular distribution, which ultimately manifests as
β-adrenergic receptor down-regulation.48

Down-regulation of β-adrenergic receptors is the most
consistent effect of antidepressants seen in preclinical
studies. Clinical studies also point to a down-regulation of
α2-adrenergic receptors by antidepressants. However, the

down-regulation of both these receptors is more likely an
adaptation to chronic antidepressant administration rather
than a primary antidepressant mechanism of action.

INTERACTION OF NOREPINEPHRINE WITH OTHER
NEUROTRANSMITTERS AND NEUROPEPTIDES

Brain neurotransmitter systems such as NE, dopamine,
5-HT, and acetylcholine interact with each other and
modulate each other’s functions. Furthermore, each of
these systems is modulated by other factors, e.g., CRH,
vasopressin, somatomedins, neuropeptide Y, cytokines,
excitatory amino acids and N-methyl D-aspartate (NMDA)
receptor function, and brain neurotrophic factors. There-
fore, any hypothesis for the pathophysiology of depression
and mechanism of drug action needs to take into account
the complexity of the regulation of central nervous system
(CNS) function. Catecholamines undoubtedly play a cen-
tral role in depression since they have been shown to be
affected by other factors that have been implicated in
depression.

Interaction of dopamine with NE and the catechol-
amines with the 5-HT system is an important area of re-
search. Noradrenergic denervation prevents TCAs from
causing sensitization of forebrain neurons to 5-HT in labo-
ratory animals.55 Lesions of the 5-HT system increase low
agonist affinity β-adrenergic receptor density,56 and NE has
been shown to have an inhibitory effect on the 5-HT sys-
tem through the presynaptic heteroreceptors.6 Depletion of
both NE and dopamine results in greater blunting of the GH
response to clonidine in rats than NE depletion alone.57

CRH has been shown to acutely increase the locus ce-
ruleus firing rate. However, effects of chronically elevated
CRH (as seen in depression)58 on noradrenergic neurons
have not been delineated. Chronic desipramine treatment
attenuates the stress-induced activation of locus ceruleus
neurons mediated by CRH neurotransmission.59 Desipra-
mine treatment has been shown to reduce cerebral spinal
fluid CRH concentrations.60 Neuropeptide Y is another
peptide that is co-localized with NE.61 In postmortem
studies of suicide victims who had a likely diagnosis of
depression, concentrations of neuropeptide Y immunore-
activity were significantly reduced in the frontal cortex
and caudate nucleus.62 Treatment with NRIs such as desip-
ramine results in decreased neuropeptide Y receptor den-
sity that could possibly be due to an increase in neuropep-
tide Y levels.63 Somatostatin, a tetradecapeptide, is found
in high concentrations in the hypothalamus, amygdala,
and nucleus accumbens. It is involved in NE and dopa-
mine neurotransmission.64 Depressed patients show de-
creased cerebral spinal fluid concentrations of somatosta-
tin,65,66 a nonspecific finding since it is also decreased
in a variety of other neuropsychiatric illnesses.64 Chronic
desipramine dosing in rats resulted in increased soma-
tostatin receptors in the nucleus accumbens.67
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Excitatory amino acids such as glutamate and aspartate
act through the NMDA and non-NMDA receptors.
They influence monoamine transmission including dopa-
mine and NE and are in turn influenced by these cat-
echolamines.68 Recently, the glutamate system has been
shown to have a direct stimulatory effect on noradrenergic
neurons,69 and the interaction between excitatory amino
acids and NE is another promising area for further study
into the underlying cause of depression. Chronic, but not
acute, administration of noncompetitive NMDA antago-
nists is associated with decreased density of β-adrenergic
receptors in the mouse cortex.70 Chronic desipramine
binding has been shown to increase total NMDA receptor
binding.71

The role of NE in depression should be interpreted in
the context of its interaction with other modulatory factors
that may also be involved in depression. One implication
of such an assessment is that a unitary cause of the patho-
physiology of all cases of depression or antidepressant
drug action is unlikely to be found. Rather, it should be
recognized that an inherent heterogeneity exists in the
etiology of depression and mechanism of antidepressant
drug action.

EFFECT OF NOREPINEPHRINE
ON INTRACELLULAR SIGNAL
TRANSDUCTION PATHWAYS

Wachtel72 postulated that a dysregulation of neuronal
second messenger function is involved in depression. This
hypothesis suggests that, in depression, an abnormality in
the major second messenger systems in the CNS results
from diminished adenylate cyclase pathway and increased
phospholipase C pathway activities. The roles of signal
transduction pathways and ultimately genomic factors
have been emphasized in recent theories of the mecha-
nism of action of antidepressants.4,48,73 It has been hypoth-
esized that although β-adrenergic receptors are down-
regulated after antidepressant treatment, there is a net
effect of increased cAMP (cyclic adenosine 3',5'-mono-
phosphate) production by antidepressants, leading to
increased signal transduction.73 Agents that increase
cAMP directly, e.g., phosphodiesterase inhibitors such as
rolipram and papaverine, have been found to have some
antidepressant activity. Beside the cAMP pathway, other
second messenger pathways such as the phospha-
tidylinositol pathway have been implicated. Inositol, a
precursor of the second messenger system of inositol
phosphate, has been reported to be useful for the treatment
of depression.74 More work needs to be done to replicate
these findings.

The antidepressant activity of increased cAMP levels
may also be mediated through an increase in cAMP re-
sponse element–binding protein that increases neurotro-
phic factor production.73

EFFECT OF NOREPINEPHRINE
ON NEUROTROPHIC FACTORS

Recently, a number of different proteins called nerve
growth factors have been discovered. These proteins have
been shown to affect the differentiation and growth of neu-
rons in the developing brain as well as the maintenance and
survival of neurons in the mature brain. In preclinical stud-
ies, brain-derived neurotrophic factor and its receptor trkB
have been shown to increase with ECT. Brain-derived neu-
rotrophic factor mRNA is also increased with chronic ad-
ministration of several different classes of antidepressant
drugs, but not with the acute administration of these drugs
or by administration of psychotropic drugs without antide-
pressant effects.75 Local infusion of brain-derived neurotro-
phic factor in the brain has been shown to have antidepres-
sant effects in 2 behavioral models of depression—the
forced-swim and learned-helplessness paradigms.76 There-
fore, the mechanism of action of antidepressants may
involve increase in production of neurotrophins such as
brain-derived neurotrophic factor and neurotrophin-3.
Their putative antidepressant effects may be a result of the
ability of neurotrophins to increase monoaminergic neuro-
transmission and to increase the survival of monoamine
neurons. Brain-derived neurotrophic factor has been shown
to increase 5-HT neurotransmission77 and to protect sero-
tonin neurons from neurotoxin-induced damage,78 and
neurotrophin-3 has been noted to have similar effects on
noradrenergic neurons.79,80 In this regard, Klimek and col-
leagues81 recently reported a decreased number of norepi-
nephrine transporter sites in the locus ceruleus in postmor-
tem specimens of depressed individuals. Since the number
of transporter sites are an indirect indicator of the viability
of NE neurons, the Klimek study suggests there may be a
decreased number of noradrenergic neurons in the locus ce-
ruleus of depressed individuals.

In addition, a number of recent studies have brought at-
tention to evidence of nerve cell and glial loss in different
brain regions in depression, e.g., the hippocampus, locus
ceruleus, and the anterior cingulate prefrontal cortex.81–84

This effect could be due to stress-related nerve cell dam-
age or to effects of depression, e.g., increased cortisol lev-
els. Neurotrophic factors released by the chronic action of
antidepressants could decrease this effect and prevent the
precipitation and perpetuation of depression. Medications
that directly increase neurotrophic factors in particular ar-
eas of the brain, e.g., the hippocampus, and drugs that act
on their receptors, e.g., the trkB receptors, would be ex-
pected to have antidepressant activity and may have a
much more rapid antidepressant effect compared with tra-
ditional antidepressants.73

In summary, antidepressants that increase NE levels may
also prevent neuronal atrophy in cortical brain areas by in-
creasing the levels of nerve growth factors. Nerve growth
factors themselves may augment the effects of NRIs.
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NEW NOREPINEPHRINE
THERAPEUTIC STRATEGIES IN DEPRESSION

Findings from the studies reviewed above suggest a
critical role of NE in the pathophysiology of depression.
Evidence suggests that NE deficiency is associated with
depression, that adrenergic receptor function may be al-
tered in depression, and that antidepressants frequently
lead to changes in these receptors. Chronic stress may be
an important precipitating factor in depression, and stress-
related chronic stimulation of the locus ceruleus may lead
to NE depletion. This effect is reversed by antidepres-
sants. Therefore, drugs that increase NE such as the NRIs
may be particularly effective since they act directly on
the locus ceruleus. Furthermore, abnormalities in signal
transduction mechanisms by which NE effects on post-
synaptic receptors are translated into intracellular events
may be present in depression. Finally, stress decreases
neurotrophic factors that maintain neuronal viability. An-
tidepressants that increase NE have been shown to in-
crease neurotrophic factors and may prevent neuronal loss
in the locus ceruleus as well as other brain regions that
regulate mood.

New therapeutic strategies are suggested by the
findings of the studies reviewed above (Table 1). Some of
these strategies have already been studied and some need
further investigation.

NE reuptake inhibition with NRIs seems to be the most
successful way to increase synaptic NE levels and achieve
antidepressant action. Reboxetine, the most selective of
the NRIs, has been found to be clinically effective in the
treatment of depression.85–89

Both NRIs and SSRIs down-regulate β-adrenergic re-
ceptors. Therefore, it was thought that a combination of
the two may have a more rapid onset of action90 or be more
effective in the treatment of depression resistant to either
class of antidepressants. Fava and colleagues,91 however,
reported that an increased dosage of fluoxetine was better
than a combination of fluoxetine and desipramine or a
combination of desipramine and lithium in the treatment
of refractory depression. A preliminary study in which pa-
tients were given 3 trials of fluoxetine or desipramine or a
combination of both failed to support the increased effi-
cacy of the combination.92 Recently, a number of drugs
that are both selective serotonin and norepinephrine up-
take inhibitors have been developed. Venlafaxine, a new
antidepressant that is an SSRI and an NRI is one of the
most potent inhibitors of β-adrenergic receptors. Because
of this property, it was thought that venlafaxine may lead
to a more rapid antidepressant response or be a more effec-
tive antidepressant. Preliminary studies93 do suggest that
venlafaxine may be useful in the treatment of depression
refractory to conventional antidepressants at dosages at
which it acts as both an NRI as well as an SSRI.

Preclinical and clinical studies of antidepressant action
have uncovered some methods that may increase the effi-
cacy or rapidity of action of antidepressants. For example,
it was thought that the antidepressant action of TCAs such
as desipramine could be augmented with yohimbine, which
would inhibit presynaptic α2-adrenergic receptors and
thereby increase the amount of synaptic NE. However, aug-
mentation of desipramine with yohimbine to treat refrac-
tory depression failed to support this hypothesis.51 Sachs
and colleagues94 reported improvement in 3 patients pre-

Table 1. Therapeutic Strategies Related to Norepinephrine Dysfunction in Depressiona

Norepinephrine Function Abnormality Seen in Depression Therapeutic Strategies

NE production and release Possible decreased production Monoamine reuptake inhibitors and selective NRIs
α Receptor Increased presynaptic α2-receptor sensitivity α2 Antagonists such as yohimbine may augment effects of

(neuroendocrine response to yohimbine) other antidepressants
Decreased postsynaptic α 2-receptor sensitivity Lithium, but not antidepressants, reverses this effect

(GH response to clonidine)
β Receptor Possible β-receptor up-regulation in depression β receptors down-regulated by most antidepressants

Combination of NRIs with SSRIs for a more rapid
down-regulation of β receptors

Interaction with other Adrenergic heteroreceptors on 5-HT neurons Antagonists of NE heteroreceptors, eg, mianserin, mirtazapine
neurotransmitters and can decrease 5-HT release
neuropeptides NE and glutamate interactions Glutamate antagonists may have antidepressant effects

Chronic activation of LC by CRH may lead to CRH antagonists; desipramine reverses effects of CRH
NE depletion in LC

Signal transduction pathways Common effect of many antidepressants is to Phosphodiesterases such as papaverine and rolipram may
increase second messenger (eg, cAMP, PIP) augment effect of NRIs; inositol may be used as an
signal transduction augmenting agent

Nerve growth factors Many antidepressants increase levels of NGFs NGFs such as BDNF and NT-3 or their derivatives may be
used as augmenting agents for rapid treatment of depression

Chronic stress associated with decrease in nerve NRIs that increase NE and NGFs may decrease neuronal loss
growth factors and cell death associated with depression

aAbbreviations: 5-HT = serotonin, BDNF = brain-derived neurotrophic factor, cAMP = cyclic adenosine monophosphate,
CRH = corticotropin-releasing hormone, GH = growth hormone, LC = locus ceruleus, NE = norepinephrine, NGF = nerve growth factor,
NRI = norepinephrine reuptake inhibitor, NT-3 = neurotrophin-3, PIP = phosphatidylinositol, SSRI = selective serotonin reuptake inhibitor.
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treated with yohimbine before ECT; however, manic symp-
toms have been reported in bipolar patients given yohim-
bine.95 Recent controlled studies with idazoxan, a selective
α2-antagonist, indicate it may have antidepressant effects.96

Finally, Harkin and colleagues97 found, in a number of ani-
mal models of depression, that a combination of reboxe-
tine and sertraline yielded a more rapid onset of response
than either reboxetine or sertraline treatment alone.

Presynaptic α2-adrenergic receptors (heteroreceptors)
are also present on serotonergic neurons and exert a tonic
inhibitory influence on 5-HT transmission.6 Drugs such
as mianserin and mirtazapine, which possess presynaptic
α2-adrenergic receptor antagonist activity, have been
shown to have antidepressant properties.98 These properties
may be due to the ability of these drugs to increase both
adrenergic and serotonergic transmission.

Phosphodiesterase inhibitors such as rolipram and pa-
paverine that increase cAMP levels have been noted to have
antidepressant properties.99,100 Development of new phar-
macologic agents that target cAMP response element–
binding protein and the nerve growth factors brain-derived
neurotrophic factor and neurotrophin-3 or their receptors,
e.g., the trkB receptor, may find a role in depression therapy
either as stand-alone or augmenting agents.73

The effect of stress on neuronal viability and its pos-
sible role in the precipitation and perpetuation of depres-
sion suggests that factors that decrease the effects of stress
such as CRH antagonists, nerve growth factors, or antiglu-
tamatergic agents may be helpful in preventing depression
and its sequelae. Recent preclinical experiments of NE
neuron transplantation in the brain further support the role
of NE in depression. Implantation of bovine chromaffin
cells in rat frontal cortex resulted in antidepressant effects
in animal models of depression. The antidepressive effects
were related to elevated levels of NE and epinephrine but
not dopamine.101

CONCLUSION

In conclusion, the study of the noradrenergic system re-
mains one of the cornerstones of depression research. Bet-
ter understanding of the action of catecholamines at the
synaptic and intracellular level holds the potential for pro-
viding clues to the etiology of depression and development
of more efficacious psychopharmacologic treatments of
depression. Medications that increase NE availability are
potentially one of the most effective classes of antidepres-
sants available for the treatment of depression and merit
more extensive study in clinical settings.

Drug names: amitriptyline (Elavil and others), bupropion (Wellbutrin),
clonidine (Catapres and others), desipramine (Norpramin and others),
fluoxetine (Prozac), maprotiline (Ludiomil), mirtazapine (Remeron),
phenelzine (Nardil), propranolol (Inderal and others), reboxetine (Vestra),
reserpine (Serpasil and others), sertraline (Zoloft), trazodone (Desyrel
and others), venlafaxine (Effexor), yohimbine (Yocon and others).
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