Pathophysiologic Mechanisms of Fibromyalgia and Its Related Disorders

Laurence A. Bradley, Ph.D.

This article reviews current findings regarding the pathophysiologic abnormalities that contribute to the enhanced pain responses of individuals with fibromyalgia as well as the relationships between fibromyalgia and commonly co-occurring disorders. Risk factors for fibromyalgia or enhanced pain responses include genetic and family influences, environmental triggers, and abnormal neuroendocrine and autonomic nervous system function. These risk factors also are associated with several disorders that frequently co-occur with fibromyalgia, such as major depressive disorder, migraine, and irritable bowel syndrome. Indeed, fibromyalgia and these co-occurring conditions may be part of a group of affective spectrum disorders that share important common, and perhaps heritable, causal factors. Recent research strongly suggests that alterations in central processing of sensory input also contribute to the cardinal symptoms of fibromyalgia, persistent widespread pain and enhanced pain sensitivity. Exposure to psychosocial and environmental stressors, as well as altered autonomic nervous system and neuroendocrine responses, also may contribute to alterations in pain perception or pain inhibition. Understanding the pathophysiology of fibromyalgia and co-occurring disorders may help clinicians provide the most appropriate treatment to their patients.

(J Clin Psychiatry 2008;69[suppl 2]:6–13)

Moreover, the co-occurrence of 1 or more of these comorbid conditions with fibromyalgia may complicate patient diagnosis and treatment. Understanding the pathophysiology of fibromyalgia and co-occurring disorders may help clinicians provide the most appropriate treatment to their patients.

BIOLICAL AND GENETIC INFLUENCES FOR FIBROMYALGIA

Fibromyalgia may be part of a group called affective spectrum disorders (ASD) that share 1 or more physiologic abnormalities important to their etiology. It has been proposed that this group includes, but may not be limited to, 10 psychiatric disorders and 4 medical disorders (Table 2). Recent studies5,6 of patients with fibromyalgia or rheumatoid arthritis (RA), as well as the first-degree relatives of these individuals, have provided support for the validity of this proposal known as the ASD hypothesis. It should be noted that the use of RA probands and their relatives ensured that any associations between fibromyalgia and other ASD conditions would be independent of the potential effects of treatment-seeking for chronic musculoskeletal pain. Arnold and colleagues6 reported that the first-degree relatives of patients with fibromyalgia or rheumatoid arthritis (RA), as well as the first-degree relatives of these individuals, have provided support for the validity of this proposal known as the ASD hypothesis. It should be noted that the use of RA probands and their relatives ensured that any associations between fibromyalgia and other ASD conditions would be independent of the potential effects of treatment-seeking for chronic musculoskeletal pain. Arnold and colleagues6 reported that the first-degree relatives of patients with fibromyalgia, compared with those of patients with RA, more frequently met diagnostic criteria for fibromyalgia or major depressive disorder (MDD) and exhibited a greater number of sensitive tender points (i.e., enhanced pain sen-
even when an individual met criteria for more than 1 ASD condition. When an ASD was measured as a continuous variable, a significant association was found between the number of lifetime forms of ASD among the relatives and their corresponding probands (p = .002). In addition, among relatives of the 78 probands with fibromyalgia, the lifetime frequency of non-fibromyalgia ASDs was 42.2%, compared with 26.5% among relatives of the 40 probands with RA. Even after excluding the mood disorders, the frequency of non-fibromyalgia ASD was 24.2% among the relatives of the probands with fibromyalgia and 13.6% among the relatives of probands with RA. Thus, fibromyalgia co-aggregated with 1 or more other forms of ASD including mood disorders (p = .004), as well as with 1 or more forms of ASD after eliminating the mood disorders (p = .012). The findings produced by these family studies support the hypothesis that fibromyalgia co-aggregates with other forms of ASD and that these disorders may share heritable physiologic abnormalities.

My colleagues and I recently assessed pain threshold levels evoked by 3 forms of stimulation as well as blood serum serotonin levels among the siblings of fibromyalgia probands and healthy controls. Preliminary data showed that the fibromyalgia probands and their siblings displayed significantly lower pain threshold levels in response to mechanical pressure, thermal heat, and ischemic stimulation compared to healthy controls and their siblings, respectively. These findings are especially noteworthy because none of the proband siblings reported persistent or recurrent musculoskeletal pain. These findings, in conjunction with those of Arnold et al., indicate that both fibromyalgia probands and their first-degree relatives display enhanced pain sensitivity to multiple nociceptive stimuli.

Positive evidence concerning the ASD hypothesis produced by Arnold, Hudson, and their colleagues, as well as the findings of enhanced pain sensitivity among persons with fibromyalgia and their first-degree relatives, suggests that both environmental and heritable factors may contribute to the aggregation of pain sensitivity in fibromyalgia. One candidate gene that may contribute to enhanced pain sensitivity is the serotonin transporter (5-HTT) gene. Offenbaecher et al. were the first to report that a single nucleotide polymorphism (short/short allele) in the regulatory region of the 5-HTT gene occurs significantly more frequently in patients with fibromyalgia than in healthy controls (31% vs. 16%, p = .046; Figure 1). This finding was replicated by Cohen and colleagues in an independent sample. Consistent with these findings, preliminary data from our family study of pain sensitivity show that both the fibromyalgia probands and their siblings exhibit significantly lower blood serum levels of 5-HT than healthy controls and their siblings, respectively. The importance of this particular polymorphism is that not only is it found more frequently in patients with fibromyalgia, but it is also found more frequently among patients with MDD.

Table 1. Prevalence of Common Comorbid Conditions in Patients With Fibromyalgia

<table>
<thead>
<tr>
<th>Condition</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic fatigue syndrome</td>
<td>21–80</td>
</tr>
<tr>
<td>Irritable bowel syndrome</td>
<td>32–80</td>
</tr>
<tr>
<td>Temporomandibular disorder</td>
<td>75</td>
</tr>
<tr>
<td>Headache (tension and migraine)</td>
<td>10–80</td>
</tr>
<tr>
<td>Major depressive disorder</td>
<td>62</td>
</tr>
<tr>
<td>Multiple chemical sensitivities</td>
<td>33–55</td>
</tr>
<tr>
<td>Interstitial cystitis</td>
<td>13–21</td>
</tr>
<tr>
<td>Chronic pelvic pain</td>
<td>18</td>
</tr>
</tbody>
</table>

Adapted with permission from Aaron and Buchwald.

Data from Arnold et al.

Table 2. Affective Spectrum Disorders Hypothesized to Share Common Physiologic Abnormalities

<table>
<thead>
<tr>
<th>Psychiatric Conditions</th>
<th>Medical Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention-deficit/hyperactivity disorder</td>
<td>Fibromyalgia</td>
</tr>
<tr>
<td>Bulimia nervosa</td>
<td>Irritable bowel syndrome</td>
</tr>
<tr>
<td>Dysthetic disorder</td>
<td>Cataplexy</td>
</tr>
<tr>
<td>Generalized anxiety disorder</td>
<td>Migraine</td>
</tr>
<tr>
<td>Major depressive disorder</td>
<td></td>
</tr>
<tr>
<td>Obsessive-compulsive disorder</td>
<td></td>
</tr>
<tr>
<td>Panic disorder</td>
<td></td>
</tr>
<tr>
<td>Posttraumatic stress disorder</td>
<td></td>
</tr>
<tr>
<td>Premenstrual dysorphic disorder</td>
<td></td>
</tr>
<tr>
<td>Social phobia</td>
<td></td>
</tr>
</tbody>
</table>

Based on Hudson et al.
compared with healthy controls. In addition, there are reports that this polymorphism is also found more frequently in patients with diarrhea-predominant irritable bowel syndrome compared with healthy controls. However, some studies have failed to replicate this association. Thus, a genetic risk factor for the development of MDD and irritable bowel syndrome. It has been concluded, then, that self-report, biological, and genetic data provide support for the validity of the ASD hypothesis.

ENVIRONMENTAL TRIGGERS FOR FIBROMYALGIA

Environmental triggers may also be involved in the pathophysiology of fibromyalgia, especially in combination with other risk factors. These triggers include mechanical or physical trauma or injury and psychosocial stressors. The effects of psychosocial stressors may be especially pervasive because these stressors are associated with both onset of chronic widespread pain (i.e., the first classification criterion for fibromyalgia) and enhanced pain responses.

Mechanical and Physical Trauma

Harkness et al. reported that both physical and psychosocial stressors predict the development of chronic widespread body pain. In this study, 896 newly employed workers recruited from 12 diverse settings who were free of pain at baseline were followed for a 2-year period to determine the extent to which exposure to physical and psychosocial risk factors would predict onset of widespread pain. It was found that 15% and 12% of workers had new-onset widespread pain at 12 months and 24 months, respectively. Several variables involving manual work, such as heavy lifting, repetitive motions, or squatting for extended periods of time, were associated with the occurrence of widespread pain. Pulling more than 56 kg (odds ratio [OR] = 1.8, 95% CI = 0.98 to 3.2) and squatting for more than 15 minutes (OR = 2.0, 95% CI = 1.1 to 3.6) significantly increased the risk of symptom onset in workers.

Psychosocial Stress Factors

Harkness et al. also found that psychosocial factors may trigger the development of widespread pain. For example, workers who reported dissatisfaction with the amount of psychosocial support they received at work and those who found their work monotonous were at a significantly higher risk for developing widespread pain (OR = 2.4, 95% CI = 0.96 to 6.0; OR = 2.4, 95% CI = 1.5 to 3.9, respectively). Additional environmental factors, such as working in hot conditions, also tended to increase the risk of developing widespread pain, although the magnitude of these associations was not statistically significant. Therefore, both physical and psychosocial factors contribute to the risk of onset of widespread pain in the workplace.

Nevertheless, it should be noted that additional analyses of risk factors for pain onset among the workers studied by Harkness and colleagues have shown that similar physical and psychosocial factors predict the onset of knee pain, shoulder pain, and low back pain. Examples of these factors include lifting heavy weights above shoulder level (shoulder and low back pain), lifting heavy weights with one or both hands (shoulder and low back pain), lifting or carrying heavy weights with one hand (knee pain), monotonous work (shoulder pain), stressful work (low back pain), and level of general psychological distress (knee pain). To summarize, exposures involving heavy weights, negative psychosocial factors involving the work environment, and psychological distress represent risk factors for new onset of several musculoskeletal pain conditions, including widespread pain.

Psychosocial stressors also may affect the severity or aversiveness of pain associated with fibromyalgia. It is widely recognized that patients with fibromyalgia frequently report that their pain is intensified by exposure to psychosocial stressors. Davis et al. examined the effects of exposure to psychosocial stressors on reports of clinical pain among women with fibromyalgia or osteoarthritis of the knee. Prior to undergoing the experimental procedures, the women with fibromyalgia, compared with those with knee osteoarthritis, produced lower ratings of physical health, positive affect, and the quality of their social networks as well as higher ratings of emotional disturbance and greater use of maladaptive coping strategies. Both groups of women were randomly assigned to undergo a 3-minute procedure designed to induce either a negative mood (via reading sad text) or neutral mood (via relaxation). Following the mood induction procedure, the
women were asked to discuss for 30 minutes a stressful event that had occurred in their lives. It was found that prolonged discussion of stressful events did not alter the clinical pain ratings of women with fibromyalgia or knee osteoarthritis who had first undergone neutral mood induction. However, women with fibromyalgia who underwent negative mood induction prior to discussion of stressful events, compared with their counterparts with knee osteoarthritis, reported significantly greater increases in their clinical pain (p < .05). Furthermore, women with fibromyalgia who underwent neutral mood induction, compared to those who underwent negative mood induction, reported greater decreases in pain intensity ratings during recovery from stressor exposure. This suggests that negative mood states and exposure to personally relevant psychosocial stressors may produce a prolonged negative impact on both pain and pain inhibition among women with fibromyalgia.

My colleagues and I recently reported preliminary findings indicating that negative mood and brief (4-minute) exposure to personally relevant, psychosocial stressors produce greater adverse changes on thermal heat ratings among women with fibromyalgia compared with those of healthy controls. Both groups of women were exposed twice to repetitive pulses of thermal heat stimuli (i.e., temporal summation) that were calibrated so that each woman would produce moderate ratings of thermal pain intensity after termination of stimulation (50 ± 5 on a 100-point scale). Prior to each thermal stimulation procedure, the women vividly imagined either a relatively neutral or highly stressful personal experience for a period of 4 minutes. We found that exposure to stressful versus neutral imagery did not influence thermal pain intensity ratings of either the patients or the healthy controls. However, women with fibromyalgia, compared to controls, produced significantly greater increases in their ratings of the aversiveness of the thermal stimuli as a function of stressful versus neutral imagery. Moreover, the group difference on change in pain aversiveness ratings was due primarily to the responses of the patients with elevated scores on a standardized measure of depressive symptoms. Together, the above studies strongly suggest that the combination of negative mood and exposure to psychosocial stressors enhances the clinical and experimental pain responses of women with fibromyalgia. These stressor-induced changes in patients’ pain reports may be due primarily to changes in perceived aversiveness of their subjective pain experiences.

PATHOPHYSIOLOGIC ABNORMALITIES IN FIBROMYALGIA

Neuroendocrine Abnormalities

Fibromyalgia is generally considered to be a stress-related disorder characterized by abnormal functioning in the hypothalamic-pituitary-adrenal (HPA) axis, such as the inability to suppress cortisol, a neuroendocrine abnormality that has also been found in patients with psychiatric disorders. McCain and Tilbe assessed patients with fibromyalgia (N = 20) or RA (N = 20) for 3 days and found that those with fibromyalgia exhibited higher peak and trough levels of plasma cortisol compared with those with RA; patients with fibromyalgia also displayed significantly higher overall plasma cortisol levels than the RA patients (p < .001). Further, 35% of patients with fibromyalgia treated with dexamethasone were unable to suppress plasma cortisol levels compared with only 5% of patients with RA (p < .001). Crofford et al. also found disturbances in the HPA axis among patients with fibromyalgia, including a decreased response to an ovine corticotropin-releasing hormone (CRH) used to stimulate a stress response in individuals. The data indicated elevated basal trough cortisol levels similar to those reported by McCain and Tilbe. The results of these studies suggest that patients with fibromyalgia are characterized by perturbed HPA axis function.

McCain and Tilbe noted that normal sleep is associated with diurnal variations of serum cortisol. Their data indicated that while serum prolactin, growth hormone, and thyroid-stimulating hormone levels were within normal ranges among patients with fibromyalgia, normal diurnal cortisol patterns were lost. The loss of normal variations in diurnal patterns may be associated with nonrestorative sleep that is often concurrent with fibromyalgia.

Autonomic Nervous System Abnormalities

Abnormalities are also present in the function of the autonomic nervous system among patients with fibromyalgia. These abnormalities include decreased microcirculatory vasoconstriction, increased hypotension, variations in heart rate, and sleep disturbance. Abnormal function of the autonomic nervous system may contribute to enhanced pain and other clinical problems associated with fibromyalgia through alterations of physiologic responses required for effective stress management (e.g., increases in blood pressure) and pain inhibition (e.g., availability of neurotransmitters such as norepinephrine and dopamine).

Vasoconstriction. Vaerøy and colleagues found that patients with fibromyalgia exhibit altered sympathetic nervous system responses compared with those of healthy controls. Subjects’ left hands were submerged in cold water for 1-minute intervals that were separated by recovery breaks (i.e., cold pressor task). The patients with fibromyalgia, compared with the control group, displayed blunted vasoconstriction responses to cold water (p = .0001). The patients also showed decreased microcirculatory responses to auditory stimulation relative to controls. These data suggest that altered function of the sympathetic nervous system arm of the autonomic nervous system may...
contribute to abnormal physiologic responses to environmental stressors in patients with fibromyalgia.

Hypotension and heart rate variability. Several studies have examined altered autonomic responses with regard to hypotension and heart rate variability in patients with fibromyalgia. Bou-Holaigah et al. reported that, during tilt-table testing, 60% of patients with fibromyalgia exhibited an abnormal drop in blood pressure ($p < .001$, versus controls), and all of the patients who tolerated the test for more than 10 minutes reported a worsening of pain symptoms, whereas controls were asymptomatic. Difficulty in maintaining blood pressure levels may directly produce unpleasant symptoms frequently associated with fibromyalgia such as fatigue and dizziness. In addition, blood pressure regulation also is necessary for maintaining effective physiologic responses to stressors.

Martínez-Lavín et al. showed that patients with fibromyalgia are characterized by significantly lower heart rate variability at the 0.050 Hz to 0.150 Hz frequency domain compared with controls while in a standing position (-0.057 vs. 0.081, respectively, $p < .05$). Significant variability in heart rate during deep breathing has also been found relative to controls ($p < .001$). Stein et al. found similar results but reported that heart rate variability may also be sex dependent, suggesting that autonomic mechanisms associated with fibromyalgia may be different in men and women. Martínez-Lavín et al. suggested that diminished heart rate variability in patients with fibromyalgia is due to an abnormal chronobiology that may also contribute to sleep disturbance and fatigue.

Sleep disturbances. Fibromyalgia is often associated with sleep disturbances, such as nonrestorative sleep, insomnia, early morning awakening, and poor quality of sleep. Roizenblatt et al. found that sleep quality was significantly lower in patients with fibromyalgia than in controls ($p = .04$), and patients with fibromyalgia reported worsening of pain symptoms after poor sleep. Alpha-delta sleep patterns associated with interrupted and nonrestorative sleep are frequently observed in patients with fibromyalgia who undergo polysomnography. Sleep disturbance may contribute to reduced energy and fatigue among patients with fibromyalgia. It also may contribute to enhanced pain. That is, frequent alpha wave intrusions during delta wave sleep are associated with reductions in production of growth hormone (GH) and insulin-like growth factor (IGF-1). Given that GH and IGF-1 are necessary for repairing muscle microtrauma, sleep disturbance may increase the likelihood of inadequate healing of muscle tissue damage and prolonged transmission ofafferent sensory transmission from muscle tissue to the spinal cord and brain that underlie the perception of muscle pain. There also may be an interaction between sleep disturbance and pain in that enhanced pain may contribute to increases in sleep disturbance that help maintain fatigue and inadequate repair of muscle tissue.

PATHOPHYSIOLOGY OF ENHANCED PAIN PERCEPTION

Patients with fibromyalgia show sensitivity to a wide array of stimuli. Table 3 demonstrates the variance in sensory testing tasks used to determine pain sensitivity in 5 patient groups. Patients with primary fibromyalgia, compared with healthy controls, showed enhanced pain sensitivity to 5 forms of sensory stimuli, and those with secondary fibromyalgia syndrome displayed enhanced pain sensitivity to 4 of the 5 stimuli. In contrast, patients with multiregional or widespread pain showed enhanced pain sensitivity to between 1 and 3 stimulation sources. There is increasing evidence that persons with fibromyalgia are characterized by augmentation of sensory input that is mediated by central nervous system events similar to those associated with central sensitization. The following discussion reviews our current understanding of these events as well as evidence produced by imaging studies of neural responses of patients with fibromyalgia regarding central augmentation of sensory input and altered pain inhibitory function.

The traditional understanding of acute pain is that a stimulus is applied to tissue (e.g., skin or muscle) and the sensory input from nerve receptors in these tissues is transmitted along primary afferents (A-δ and C nerve fibers) to the dorsal horns of the spinal cord (Figure 2, quadrant A). Sensory input is then transmitted along second-order, spinal neurons to the brain, although this input may be altered by physiologic processes that occur in the dorsal horns. Quadrants B and C show the events involved in sensory transmission (B) or augmentation of this
transmission (i.e., central sensitization) in the dorsal horns of the spinal cord (C). Quadrant B shows that A-δ and C nerve fibers transmit action potentials to their presynaptic terminals in the spinal dorsal horns. Substance P and excitatory amino acids are released that bind to and activate postsynaptic receptors (i.e., neurokinin [NK]-1, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA]) located on second-order pain transmission neurons that ascend to the brain carrying sensory input that may produce perceptions of pain. The N-methyl-d-aspartate (NMDA)–linked channels are inoperative as they are “plugged” by Mg$^{2+}$.

Quadrant C shows that intense or prolonged sensory input from A-δ and C afferents sufficiently depolarizes the dorsal horn neurons so that Mg$^{2+}$ exits NMDA-linked ion channels. This is followed by an influx of extracellular Ca$^{2+}$ and production of nitric oxide, which diffuses out of the dorsal horn neurons. Nitric oxide, in turn, promotes the exaggerated release of excitatory amino acids and substance P from presynaptic afferent terminals and causes the dorsal horn neurons to become hyperexcitable.

Until the 1990s, activation of glia cells (i.e., astrocytes and microglia) was not considered relevant to the function of dorsal horn neurons and pain signaling. However, quadrant D shows that dorsal horn glia cells are activated by release of nitric oxide, prostaglandins, fractalkine, substance P, adenosine triphosphate (ATP), and excitatory

Figure 2. Pathophysiologic Mechanisms Involved in Enhanced Pain Perception

A. Sensory Input to the Dorsal Horns

B. Sensory Transmission in the Dorsal Horns

C. Release of Substances That Promote Sensory Transmission

D. Central Sensitization in Patients With Fibromyalgia

Reprinted with permission from Watkins et al.

Abbreviations: AMPA = α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, ATP = adenosine triphosphate, EAA = excitatory amino acids, IL = interleukin, NK-1 = neurokinin-1, NMDA = N-methyl-D-aspartic acid, NO = nitrous oxide, NOS = nitrous oxide system, PG = prostaglandin, PTN = posterior tibial nerve, ROS = reactive oxygen species, TNF = tumor necrosis factor.
fibromyalgia. Sensitization when they discuss the pathophysiology of central augmentation of sensory input rather than central investigators involved in fibromyalgia research refer to fibromyalgia remains unknown. For this reason, most contrast, the source of sensory input among patients with produced if the source of sensory input is eliminated. In con- trast, the source of sensory input among patients with fibromyalgia. It should be noted, however, that in both animal and human models of central sensitization, the source of sensory input (e.g., nerve injury) is identified and pain sensitivity is reduced if the source of sensory input is eliminated. In contrast, the source of sensory input among patients with fibromyalgia remains unknown. For this reason, most investigators involved in fibromyalgia research refer to central augmentation of sensory input rather than central sensitization when they discuss the pathophysiology of fibromyalgia.

The model of central sensitization described above also may underlie the enhanced sensitivity to low-intensity stimuli that is exhibited by patients with fibromyalgia. It should be noted, however, that in both animal and human models of central sensitization, the source of sensory input (e.g., nerve injury) is identified and pain sensitivity is reduced if the source of sensory input is eliminated. In contrast, the source of sensory input among patients with fibromyalgia remains unknown. For this reason, most investigators involved in fibromyalgia research refer to central augmentation of sensory input rather than central sensitization when they discuss the pathophysiology of fibromyalgia.

Recent documentation of changes in brain activity using functional magnetic resonance imaging (fMRI) illustrates the phenomenon of central augmentation of sensory input among patients with fibromyalgia. Gracely et al. for example, reasoned that if central augmentation of sensory input is associated with fibromyalgia, one would expect that patients, compared with healthy controls, would report equivalent levels of perceived pain at lower stimulus intensity levels. Nevertheless, both patients and controls would show large increases in fMRI measured activity (i.e., regional cerebral blood flow [rCBF]) in the same brain structures involved in pain processing. To test this hypothesis, the investigators first measured the amount of repetitive mechanical pressure stimulation of the left thumbnail bed required by fibromyalgia patients and healthy controls to produce moderate ratings of pain intensity (i.e., 11 on a 20-point scale). It was found that patients produced these ratings at about one half the intensity of stimulation required by the controls (p < .001). Despite the group difference in stimulation intensity, both patients and controls showed significant increases in brain rCBF in the same 7 brain structures (e.g., somatosensory cortex, cerebellum). Moreover, when the healthy controls were exposed to the same stimulus intensity levels administered to the patients, they did not experience pain, and fMRI measures indicated little activation in brain structures involved in pain processing.

Investigators also are beginning to use neuroimaging procedures to document alterations in brain inhibitory function of patients with fibromyalgia. For example, Wood et al. used ligand positron emission tomographic (PET) imaging to compare patients and healthy controls with respect to dopamine receptor availability in areas of the brain involved in processing pain during noxious stimulation. There is substantial evidence that dopamine is involved in pain inhibition in several brain regions within the basal ganglia (e.g., nucleus accumbens). Thus, one would expect that, during exposure to noxious stimulation, ligand PET imaging will show reductions in dopamine binding potential at dopamine receptors in these areas (i.e., evidence of enhanced release of endogenous dopamine). However, Wood and colleagues demonstrated that, after infusion of hypertonic saline in the anterior tibialis muscle of the right leg, patients with fibromyalgia reported higher levels of pain. Moreover, only the healthy controls were characterized by significant reductions in binding potential at dopamine receptors in basal ganglia structures including the nucleus accumbens, globus pallidus, and putamen. These findings suggest, then, that both central augmentation of sensory input and diminished central pain inhibitory functions contribute to the abnormal pain sensitivity and persistent pain experienced by patients with fibromyalgia.

CONCLUSION

Factors that contribute to the pathophysiology of fibromyalgia include biologic and genetic influences, environmental triggers including stressors, and abnormal function of the neuroendocrine and autonomic nervous systems. These factors are frequently shared by persons with disorders that co-occur with fibromyalgia, such as chronic fatigue syndrome, irritable bowel syndrome, and MDD. Enhanced pain sensitivity occurs not only in patients with fibromyalgia but also more frequently in their first-degree relatives compared with the relatives of both healthy people and persons with other painful illnesses. Both central augmentation of sensory input and deficits in central pain inhibitory mechanisms appear to contribute to enhanced pain sensitivity in persons with fibromyalgia.

Disclosure of off-label usage: The author has determined that, to the best of his knowledge, no investigational information about pharmaceutical agents that is outside U.S. Food and Drug Administration–approved labeling has been presented in this article.
REFERENCES
42. Altemeier M, Stewart J. The role of dopamine in the nucleus accumbens in analgesia. Life Sci 1999;65:2269–2278