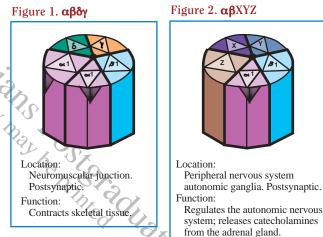


Paying Attention to Your Acetylcholine, Part 2

The Function of Nicotinic Receptors

Stephen M. Stahl, M.D., Ph.D.

Issue: The many types of nicotinic cholinergic receptors differ in their structure, function, location, response to drugs, and involvement in cognitive disorders such as Alzheimer's disease and schizophrenia.


n this second part of a 2-part series, we present the role of nicotinic cholinergic receptors in regulating neurotransmission and in mediating cognitive functions in health and disease. Last month, we discussed the *structure* of nicotinic cholinergic receptors.¹

NICOTINIC RECEPTOR MOLECULAR SUBTYPES

Nicotinic receptors have an everincreasing array of subtypes defined by which 5 of the many possible subunits are grouped together.^{1–3} Some of the best known examples and their hypothetical functions are shown in Figures 1 and 2. For example, outside the brain, unique nicotinic receptors are located postsynaptically in skeletal muscle where they mediate contraction of skeletal muscle.^{2,3} Other types of nicotinic receptors are located in the autonomic ganglia of the peripheral nervous system where they regulate the autonomic nervous system.^{2,3}

In the brain, there are many

subtypes of nicotinic receptors, and 2 of the most important are shown in Figures 3 and 4. The α_4 - β_2 subtype may be involved postsynaptically in excitatory neurotransmission.⁴ More of these receptors may be lost early in Alzheimer's disease than other nicotinic receptor subtypes.⁵ The α_7 subtype is predominantly presynaptic⁶ and is located not only on cholinergic terminals, but also on the terminals of numerous noncholinergic neurons.⁷ These presynaptic α_7 nicotinic receptors are responsible for generating very fast calcium currents and, when they do so, causing neurotransmitter release. Thus, α_7 nicotinic receptors enhance not only

acetylcholine release, but also the release of glutamate, serotonin, and other neurotransmitters.⁷ In addition, they may mediate dopamine release in response to nicotine, particularly in the nucleus accumbens, thereby activating the classic "reward" pathway and causing addiction to cigarettes.⁸

NICOTINIC RECEPTOR PHARMACOLOGIC SUBTYPES

Since the molecular configurations of nicotinic receptors differ in various sites of the body and in various sites within the brain, it is theo-

BRAINSTORMS is a monthly section of The Journal of Clinical Psychiatry aimed at providing updates of novel concepts emerging from the neurosciences that have relevance to the practicing psychiatrist.

From the Clinical Neuroscience Research Center in San Diego and the Department of Psychiatry at the University of California San Diego.

Reprint requests to: Stephen M. Stahl, M.D., Ph.D., Editor, BRAINSTORMS, 8899 University Center Lane, Suite 130, San Diego, CA 92122.

BRAINSTORMS Clinical Neuroscience Update

phrenic

cognition.

tients, thereby

improving

SUMMARY

of the func-

tions of nico-

tinic receptors

are occurring

at a fast pace.

A great deal

of attention is

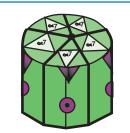
being directed

to one specific

Discoveries

pa-

Figure 3. α₄-β₂
Fig


Image: Constraint of the system of the system

retically possible that therapeutic agents could be found that would act at nicotinic receptors at some sites but not at others.² If so, this might allow desirable CNS-mediated cognitive actions without undesirable peripherally mediated side effects.^{2,3} Although some drugs bind more readily to certain nicotinic receptors than to others, this pharmacologic binding affinity does not necessarily correlate specifically with molecular configurations.³

NICOTINIC RECEPTORS AND COGNITION

Nicotinic agonists improve attention in normal people and may improve cognitive function in patients with Alzheimer's disease.⁹ The α_7 nicotinic receptors may inhibit β -amyloid-induced neuronal death and thereby confer a neuroprotective action in Alzheimer's disease.¹⁰ In addition, strong genetic and pharmacologic evidence suggests that the α_7 nicotinic receptor is involved in the attentional and cognitive deficit associated with schizophrenia, known as an auditory-gating defi-

Figure 4. **a**₇

Location: Central nervous system. Presynaptic.

Function: Regulates a calcium channel; rapidly desensitizes after stimulation by agonists; stimulates further acetylcholine refease; stimulates release of glutamate, serotonin, norepinephrine, and other neurotransmitters; regulates auditory-gating deficit of schizophrenic patients; is the target of novel cognitive enhancers.

> receptor subtype, the α_7 nicotinic receptor, as a potential target for improving cognition in both Alzheimer's disease and schizophrenia.

REFERENCES

- Stahl SM. Paying attention to your acetylcholine, pt 1: structural organization of nicotinic receptors. J Clin Psychiatry 2000;61:547–548
- 2. Halladay MW, Dart MJ, Lynch JK. Neuronal

cit. ¹¹ Agonists of the α_7 nicotinic receptor might reverse this dysfunction in schizo-

- Clarke PBS, Schwartz RD, Paul SM, et al. Nicotinic binding in rat brain: autoradiographic comparison of ³H-acetylcholine, ³H-nicotine, and ¹²⁵I-bungarotoxin. J Neurosci 1985;5: 1307–1315
- Martin-Ruiz CM, Court JA, Molnar E, et al. Alpha 4 but not alpha 3 or alpha 7 nicotinic acetylcholine receptor subunits are lost from the temporal cortex in Alzheimer's disease. J Neurochem 1999;73:1635–1640
- Albuquerque EX, Alkondon M, Pereira EFR, et al. Properties of neuronal nicotinic acetylcholine receptors: pharmacological characterization and modulation of synaptic function. J Pharmacol Exp Ther 1997;280:1117–1136
- Alkondon M, Maelicka A, Albuquerque E. Diversity of nicotinic acetylcholine receptors in rat brain: bungarotoxin-sensitive nicotinic receptors in olfactory bulb neurons and presynaptic modulation of glutamate release. J Pharmacol Exp Ther 1996; 278:1460–1471
- Clementi F, Fornasari D, Gotti C. Neuronal nicotinic acetylcholine recpetors: from structure to therapeutics. Trends Pharmacol Sci 2000;21:35–37
- Newhouse P, Potter A, Conwin J, et al. Effects of nicotinic cholinergic agents on cognitive functioning in Alzheimer's and Parkinson's disease. Drug Dev Res 1996;38:278–289
- 0. Kihara T, Shimohama S, Urushitani M, et al. Stimulation of alpha 4 beta 2 nicotinic acetylcholine receptors inhibits beta amyloid toxicity. Brain Res 1998;792:331–334
- Waldo MC, Adler LE, Leonard S, et al. Familial transmission of risk factors in first degree relatives of schizophrenic people. Biol Psychiatry 2000;47:231–239

Take-Home Points

- Different subtypes of nicotinic cholinergic receptors are formed when various subunits are assembled.
- Presynaptic α₇ nicotinic receptors regulate not only acetylcholine release, but also the release of other neurotransmitters, such as glutamate, serotonin, and dopamine.
- The α₇ nicotinic receptors may mediate the ability of nicotine to enhance attention and to cause addiction to smoking.
- The α₇ nicotinic receptors may also be abnormal in schizophrenia, thus causing a cognitive problem signified by problems in sensory gating. These receptors may also be the ultimate target of drugs for Alzheimer's disease that boost acetylcholine and improve memory and behavior.

J Clin Psychiatry 61:9, September 2000