
Yatham et al.

40 J Clin Psychiatry 2005;66 (suppl 5)

he neurochemistry and pathogenesis of bipolar dis-
order remain poorly understood,1 despite the preva-
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T
lence and significant morbidity and mortality of this dis-
order. As discussed elsewhere in this supplement, patients
with bipolar disorder spend a greater amount of time in the
depressed phase than the manic phase2 and view the de-
pressive phase as resulting in greater psychosocial impair-
ment or disability.3 Despite this, less attention has been
paid to treatments for the depressive phase, and few ef-
fective agents are available. Bipolar depression has tra-
ditionally been treated with medications known to be
effective for unipolar depression, e.g., “conventional” an-
tidepressants, such as the selective serotonin reuptake in-
hibitors (SSRIs), bupropion, and serotonin-norepinephrine
reuptake inhibitors (SNRIs). However, due to the sus-
pected risk of induction of manic switch or rapid cycling,
antidepressants are not recommended as monotherapy for
acute or long-term treatment of bipolar depression.4,5 For
example, imipramine monotherapy destabilized the illness
course when exerting its antidepressant efficacy by caus-
ing patients to relapse into mania.6
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The newer antidepressants are viewed as less likely
to destabilize the overall course of illness by causing pa-
tients to switch into mania from the depressed phase.7 Al-
though the data are limited for the efficacy of a combina-
tion treatment, it is now common practice to use newer
antidepressants in combination with mood stabilizers to
treat more severe episodes of acute bipolar depression,
and such practice is endorsed by current guidelines.4,8,9 In-
terestingly, some recent studies show that newer anti-
depressants, used in combination with lithium or valpro-
ate, have a differential propensity for manic switch. For
example, venlafaxine is more likely to induce a manic
switch than paroxetine,10 sertraline,11 or bupropion,11 and
desipramine is associated with higher switch rates than
bupropion.12

More recently, 2 atypical antipsychotics, olanzapine
and quetiapine, have been shown to be effective in bipolar
depression in large, randomized, controlled studies (de-
scribed in detail elsewhere in this supplement13). The in-
cidence of treatment-emergent mania in these studies
was similar to placebo (olanzapine: 5.7%, olanzapine-
fluoxetine: 6.4%, placebo: 6.7%; quetiapine 300 mg/day:
3.9%, quetiapine 600 mg/day: 2.2%, placebo: 3.9%), dem-
onstrating that atypical antipsychotics possess antidepres-
sant properties without destabilizing mood.

Olanzapine and quetiapine are reported to have affinity
to several receptors in the brain: serotonin 5-HT1A and
5-HT2, dopamine D1 and D2, histamine H1, α1- and α2-
adrenergic, and muscarinic M1 receptors (quetiapine has
negligible affinity whereas olanzapine has appreciable af-
finity at the M1 receptors).14 Currently it is unclear which
of these receptor-binding properties of olanzapine and
quetiapine underlie their antidepressant effects. To date,
other atypical antipsychotics, such as clozapine, zotepine,
aripiprazole, risperidone, and ziprasidone, have not been
examined for their efficacy in treating acute bipolar
depression in large, randomized, double-blind, placebo-
controlled trials. However, preliminary data from small,
open-label trials indicate efficacy.15

In light of the recent findings of efficacy in bipolar de-
pression with olanzapine and quetiapine and the evidence
that they do not destabilize mood, it is of interest to ex-
plore which of their multiple receptor mechanisms confer
antidepressant and mood-stabilizing properties for these
agents. In this article, we will briefly review the neurobi-
ology of depression and the prevailing theories regarding
the mechanisms of action of antidepressant medications.
The aim is to examine commonalities and differences be-
tween the known actions of olanzapine, quetiapine (as
these have demonstrated efficacy in bipolar depression),
and the more “conventional” antidepressants, such as the
SSRIs, SNRIs, and other newer unimodal antidepressant
medications. Where possible, evidence from bipolar de-
pression will be discussed, but given that more data are
available in patients with major unipolar depression than

bipolar depression, reference to key findings from uni-
polar depression will also be included.

NEUROBIOLOGY OF BIPOLAR
DEPRESSION/MECHANISMS OF ACTION

OF ANTIDEPRESSANT TREATMENTS

Monoamines (i.e., serotonin, norepinephrine, dopa-
mine) and their receptors, γ-aminobutyric acid (GABA),
glutamate, and various second messenger signaling path-
ways have all been implicated in the neurobiology of bi-
polar disorder. Much of the evidence for the role of these
systems in depression has evolved based on the presumed
mechanisms of action of effective therapeutic agents. For
example, the amine hypothesis of depression is based on
the finding that several antidepressants acutely elevate
monoamine (serotonin, norepinephrine, dopamine) levels
and drugs that deplete these neurotransmitters can exacer-
bate depression.

Serotonin
A rapidly growing body of data indicates that

dysfunction in serotonergic activity may be involved
in the pathophysiology of depression.16 However, the pre-
cise role of the serotonin system in depressive symptom-
atology is unclear. Similarly, the exact mechanism by
which SSRIs exert their therapeutic effects is unknown.
Several mechanisms have been proposed, including block-
ade of the 5-HT transporter with consequent increase in
synaptic 5-HT levels, down-regulation of presynaptic and
up-regulation of postsynaptic 5-HT1A receptors, and down-
regulation of 5-HT2A receptors.

There is some evidence that absolute levels of the 5-HT
metabolite, 5-hydroxyindoleacetic acid (5-HIAA), are re-
duced in the cerebrospinal fluid (CSF) of patients with bi-
polar depression, as revealed by probencid-induced accu-
mulation studies and in postmortem brains of those with
bipolar disorder.17 In addition, some studies show that ac-
tivity of the 5-HT transporter is reduced in platelets of pa-
tients with bipolar depression.18 Although the affinity
differs, all SSRIs, including citalopram, fluoxetine, flu-
voxamine, paroxetine, and sertraline, selectively bind to
the 5-HT transporter and block reuptake of 5-HT from the
synapse into the presynaptic nerve terminal, thereby rais-
ing synaptic 5-HT concentrations with consequent activa-
tion of one or more types of 5-HT receptors.

The elevation in 5-HT levels by SSRIs activates not
only postsynaptic 5-HT1A receptors but also presynaptic
somatodendritic receptors, which reduce the firing activity
of 5-HT neurons with consequent reduction in 5-HT lev-
els. Activation of the presynaptic 5-HT1A receptors has
been hypothesized to underlie the reason for the latency
in onset of action of SSRIs, as it takes up to 2 weeks
for these receptors to become desensitized. Some evidence
for this hypothesis comes from clinical studies that
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have shown faster onset of action of SSRIs when a
β-adrenergic/5-HT1A receptor antagonist, pindolol, was
coadministered with SSRI treatment.19,20 However, con-
current activation of postsynaptic 5-HT1A receptors has
also been shown to occur with fluoxetine.21

Several positron emission tomography (PET) studies
have shown alterations in 5-HT1A and 5-HT2A receptor
binding in patients with depression. Multiple brain regions
have shown a decrease in 5-HT1A receptor binding, includ-
ing frontal, temporal, and limbic cortical regions in un-
medicated as well as medicated patients with depression,
and reductions in cortical 5-HT1A receptor binding have
been found to persist following recovery from a depres-
sive episode even after antidepressant discontinuation.22–24

These data indicate that reduction in cortical 5-HT1A re-
ceptor binding may be a trait marker that confers vulner-
ability to depression.24

PET studies have also reported reductions in brain
5-HT2A receptor binding in widespread cortical brain re-
gions of antidepressant-free patients.25,26 It has been postu-
lated that the reduction in 5-HT2A receptors seen in pa-
tients with depression at baseline represents an adaptive
mechanism, whereby some patients auto–down-regulate
their brain 5-HT2A receptors to achieve relief from a de-
pressive episode.27 Indeed, there is some evidence that
down-regulation of the 5-HT2A receptors may play a role
in therapeutic effects of some antidepressant treatments.
Initial preclinical studies showed that 5-HT2A receptor–
mediated behavior was reduced following 14 days of anti-
depressant medication,27 which led to the theory that such
reduction is a mediator of antidepressant activity. Clinical
evidence for the role of the 5-HT2A receptors in antidepres-
sant mechanism of action comes from imaging studies
showing reduced densities of 5-HT2A receptors following
treatment with paroxetine,28 desipramine,29 nefazodone,30

or electroconvulsive therapy (ECT).31

Thus, the mechanism of action of antidepressants en-
compasses a number of interactions with the serotonin
system, such as increasing synaptic 5-HT levels via block-
ade of the 5-HT transporter, down-regulation of presynap-
tic and activation of postsynaptic 5-HT1A receptors, or
down-regulation of 5-HT2A receptors.

Norepinephrine
Norepinephrine was originally proposed32 as the major

neurotransmitter involved in both depression and mania
in patients with bipolar disorder. Studies in patients
with unipolar depression have shown changes in adreno-
ceptor density and function that strongly implicate central
noradrenergic dysfunction in the neurobiology of depres-
sion.33 Furthermore, reduced levels of norepinephrine me-
tabolite 3-methoxy-4-hydroxyphenylglycol (MHPG) in
urine of patients with unipolar or bipolar depression, as
well as reduced norepinephrine and its metabolite levels in
postmortem brain samples of patients with bipolar disor-

der, are consistent with decreased noradrenergic function
in bipolar depression.19,34

If noradrenergic system function is decreased in depres-
sion, strategies that enhance noradrenergic transmission
either through an increase in synaptic norepinephrine
levels or functional responsiveness of adrenergic receptors
should be effective in relieving depressive symptoms.
Indeed, unimodal antidepressants target norephinephrine
at several levels to exert their therapeutic effects. For in-
stance, desipramine, reboxetine, venlafaxine, and dulox-
etine elevate synaptic norepinephrine levels through reup-
take inhibition and are effective in treating depressive
symptoms.35,36 Further, there is some evidence that the
functional responsiveness of the α1-adrenergic receptors
increases following administration of reboxetine, a selec-
tive norepinephrine reuptake inhibitor.37 Antidepressants
have also been shown to target the α2-adrenergic autore-
ceptors, with agents such as mirtazapine potently antago-
nizing central α2-adrenergic autoreceptors and heterore-
ceptors, thus enhancing noradrenergic transmission.37,38

Dopamine
There is some evidence that depression in bipolar disor-

der may be due to low dopamine levels.39–41 Of the major
dopaminergic pathways, the mesocorticolimbic system,
which innervates limbic structures such as the nucleus ac-
cumbens, ventral hippocampus, and prefrontal cortex, is
involved in a variety of functions related to motivation and
reward that may be implicated in depression. In contrast,
the nigrostriatal dopamine pathway is involved in motor
functions, while the tuberoinfundibular pathway plays a
role in endocrine functions. Consistent with this, region-
specific reductions in D1 binding—in the frontal cortex but
not the striatum—have been shown in patients with bipolar
disorder compared with control subjects.42 The role of do-
pamine in bipolar depression is further supported by find-
ings of low levels of homovanillic acid (HVA, dopamine
metabolite) in the CSF of patients with major depression.43

Inhibition of dopamine reuptake has been postulated as
a target of antidepressant action. Drugs that inhibit dopa-
mine uptake, such as maprotiline and bupropion, are effec-
tive antidepressants.44,45 Furthermore, some of the SSRIs,
such as sertraline, have been shown to inhibit dopamine
reuptake,46 while other SSRIs, such as fluoxetine, have
been shown to increase extracellular dopamine in the rat
prefrontal cortex.47 Similarly, venlafaxine also inhibits do-
pamine reuptake, although to a lesser extent than either se-
rotonin or norepinephrine reuptake. This mixed action of
venlafaxine makes it a potentially useful agent in the treat-
ment of patients with depression who are refractory to
agents that affect only one of those monoamine systems.48

Further, antidepressant properties of dopamine receptor
agonists, such as bromocriptine49 and pramipexole,50,51 in
patients with bipolar depression also support a role for do-
pamine in mechanisms of antidepressant treatments.
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A study by Lammers and colleagues52 showed that sev-
eral types of antidepressants (amitriptyline, desipramine,
imipramine, and tranylcypromine) significantly increased
D3 receptor messenger ribonucleic acid (mRNA) expres-
sion in the shell of the nucleus accumbens after 21 days of
treatment, while fluoxetine significantly increased D3 re-
ceptor mRNA after a 42-day treatment. These authors sug-
gested that the up-regulation of the D3 pathway, involved
in reward and motivation, may represent a common neuro-
biological mechanism of antidepressant action.52 The D4

receptor has also been implicated in the mechanism of an-
tidepressant action. Twelve patients with unipolar depres-
sion who were treated with paroxetine showed signif-
icantly lower levels of D4 dopamine receptor mRNA
compared with 10 healthy controls. Following an 8-week
treatment with paroxetine, the D4 dopamine receptor
mRNA levels had returned to control levels.53 Few studies
examined the effects of antidepressants on the D1 dopa-
mine receptor. For instance, antidepressants such as imip-
ramine have been reported to have activating effects on the
dopamine D1 receptor54,55; however, preclinical studies
have shown no effect of fluoxetine, desipramine, or tran-
ylcypromine administration on D1 dopamine receptor
mRNA expression in subregions of the nucleus accumbens
and striatum.56

GABA
Another system hypothesized to play a role in depres-

sion is the GABA system. GABA is one of the most abun-
dant neurotransmitters in the brain, and recent post-
mortem studies have implicated this system in the biology
of bipolar disorder.57 The integrity of the GABAergic sys-
tem was estimated using the synthetic enzymes glutamic
acid decarboxylase (GAD)-65 and GAD-67 as markers;
reduced levels of both enzymes were identified in the cer-
ebellum of patients with bipolar disorder.57

Neuronal Pathway Interconnections
and Neurotransmitter Interactions

Serotonergic, noradrenergic, and dopaminergic trans-
mitter systems all interact with each other, and they all af-
fect the glutamatergic neurons. Some researchers have
suggested that an interaction between some or all of these
pathways may mediate expression of symptoms in uni-
polar and bipolar depression.58 Also of particular note is
the functional interplay between serotonin and dopamine
systems. The 5-HT2A receptors on presynaptic dopaminer-
gic neurons have a tonic inhibitory effect on dopamine re-
lease, whereas blockade of these presynaptic 5-HT2A re-
ceptors by 5-HT2A antagonists increases dopamine levels.

Second Messenger Signaling Pathways
In addition to the neurotransmitters discussed above,

other target molecules postulated to play a role in the neu-
robiology of bipolar depression and therapeutic effects

of antidepressant treatments include G protein subunits,
protein kinase A (PKA)/protein kinase C (PKC), or second
messengers, such as mitogen-activated protein kinase
(MAPK) (Figure 1).59 The effects of antidepressants on
second messenger signaling pathways, rather than their pri-
mary effects on receptors, may underlie the antidepressant
efficacy of some agents. Norepinephrine, dopamine, and
most 5-HT receptors are G protein coupled. Antidepres-
sants, by acting on these G protein–coupled receptors, acti-
vate second messenger systems, such as adenyl cyclase,
and increase the concentration of cyclic adenosine mono-
phosphate (cAMP). Up-regulation of cAMP levels leads to
activation of cAMP-dependent PKA, which activates the
phosphorylation of the transcription factor cAMP response
element binding protein (CREB). CREB activation may be
mediated by Ca2+-dependent protein kinases (e.g., Ca2+/
calmodulin-dependent protein kinase [CaMK] and PKC),
and studies have shown activation of cAMP and calcium-
calmodulin–dependent kinases following antidepressant
treatment of patients with either unipolar depression or bi-
polar disorder.60 Some antidepressants (desipramine, tran-
ylcypromine, fluoxetine) have been shown to induce an in-
creased phosphorylation of CREB in brain areas such as the
amygdala and hippocampus. This is important, as phospho-
rylation is a prerequisite for CREB function. Brain-derived
neurotrophic factor (BDNF) is a downstream target of the
cAMP signaling pathway. Increased postmortem expres-
sion of BDNF has been demonstrated in the hippocampus
of patients who were treated with antidepressants but not in
those who were antidepressant-free.61

MECHANISM OF ACTION OF
ATYPICAL ANTIPSYCHOTICS IN

BIPOLAR DEPRESSION

Among the atypical antipsychotics, currently only olan-
zapine and quetiapine have been shown to provide sig-
nificantly greater efficacy than placebo in the treatment of
bipolar depression.62,63

Serotonin-Mediated Effects
Olanzapine and quetiapine both affect serotonin neuro-

transmission, potentially contributing to their antidepres-
sant effects and reflecting similarities between these and
the newer antidepressants. Both are antagonists at the
5-HT2A receptor. As previously stated, PET studies indicate
that SSRIs, norepinephrine reuptake inhibitors, noradren-
ergic and specific serotonergic antidepressants, and ECT
down-regulate brain 5-HT2A receptors. Quetiapine has a
higher affinity for serotonergic receptors than dopaminer-
gic receptors.64 A consistently higher degree of 5-HT2A

receptor occupancy than dopamine D2 receptor occupancy
with quetiapine has been observed in PET studies (74%
versus 41%, respectively, at 750 mg/day).65 Also, the du-
ration of 5-HT occupancy with quetiapine significantly
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outlasts the duration of D2 occupancy. Animal studies have
shown that atypical antipsychotics that block 5-HT2A recep-
tors down-regulate brain 5-HT2A receptors.66 Thus, down-
regulation of this serotonin receptor subtype—5-HT2A—
seems to represent a strong point of commonality among
olanzapine, quetiapine, and the antidepressant treatments,
such as paroxetine, nefazodone, desipramine, and ECT.

Interestingly, olanzapine and quetiapine also have par-
tial agonistic activity on the serotonin system, increasing
activity at 5-HT1A receptors. There is some regional speci-
ficity in their partial agonist action at the 5-HT1A receptors
as it occurs in the prefrontal cortex but not the nucleus ac-
cumbens.67 In the prefrontal cortex, 5-HT1A receptor stimu-
lation increases dopamine release. Thus, olanzapine and
quetiapine appear to selectively increase dopamine levels
in the prefrontal cortex via a 5-HT1A–related mechanism.67

Both olanzapine and quetiapine appear also to have affinity
to the 5-HT6 receptor,14,68 although the contribution of this
receptor for antidepressant effects remains unknown.

Norepinephrine-Mediated Effects
Olanzapine exhibits potent antagonistic activity at

α1-adrenergic receptors in vitro.68 Animal studies have
shown that olanzapine alone and the combination of olan-
zapine and fluoxetine lead to a substantial increase in the

firing of locus ceruleus neurons with consequent elevation
in norepinephrine release in prefrontal cortex.69 Similarly,
quetiapine alone has been reported to increase norepi-
nephrine levels in the prefrontal cortex.70 The potential in-
volvement of the α2-adrenergic receptors has also been
investigated, with quetiapine showing greater affinity for
the α2b receptor subtype compared with other atypical
antipsychotics.71

Dopamine-Mediated Effects
Olanzapine and quetiapine increase dopamine release in

the prefrontal cortex,70,72 most likely through their effects
on 5-HT1A and 5-HT2A receptors. 5-HT2A receptors are pre-
sent on presynaptic dopamine neurons, and stimulation of
these heteroreceptors inhibits dopamine release whereas
blockade leads to increased dopamine release. Since atypi-
cal antipsychotics block 5-HT2A receptors, they are ex-
pected to increase dopamine levels in the prefrontal cortex.
Further, animal studies have shown that atypical antipsy-
chotics increased dopamine release by stimulating 5-HT1A

receptors in the prefrontal cortex.67

Quetiapine and olanzapine are both dopamine D2

antagonists. However, it has been shown that quetiapine
binds more loosely than olanzapine to the dopamine D2 re-
ceptor.73 It is postulated that rapid dissociation from the D2

Figure 1. Second Messenger Pathways Targeted by Antidepressantsa

aReprinted with permission from Bezchlibnyk and Young.59

Abbreviations: AP-1 = activator protein-1, CaMK = Ca2+/calmodulin (CaM)-dependent protein kinase,
CaMKK = CaM-dependent protein kinase kinase, cAMP = cyclic adenosine monophosphate,
CRE = cAMP response element, CREB = cAMP-response element binding protein,
ERK = extracellular signal-related kinase, GSK-3β = glycogen synthase kinase-3 beta,
MAPK = mitogen-activated protein kinase, PI = phosphoinositide, PKA = protein kinase A,
PKC = protein kinase C, RSK = p90 ribosomal S6 kinase, TRE = 12-O-tetradecanoylphorbol-13-
acetate–responsive element.
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receptor underlies the “atypicality” of the mechanism of
action of atypical antipsychotic agents.74 Atypicality is de-
fined as a lower propensity for extrapyramidal symptoms,
although sometimes other definitions are used.75 Rapid
dissociation could also help explain the human PET stud-
ies showing that the occupation of D2 receptors by quetia-
pine is transiently high at 2 to 3 hours and disappears 24
hours later.76 Transient D2 receptor occupancy may ac-
count for less dysphoria with quetiapine compared with
other, more potent D2 blockers. Indeed, in clinical trials
looking at patients with bipolar I depression, quetiapine
has shown a larger effect size (relative improvement ver-
sus placebo) than olanzapine (1.09 for quetiapine 600
mg/day and 0.91 for quetiapine 300 mg/day vs. 0.32 for
olanzapine alone and 0.68 for olanzapine in combination
with fluoxetine).62,63 In further support of this hypothesis,
clinical trials comparing olanzapine with haloperidol have
shown that haloperidol is less effective at improving de-
pressive symptoms and induces a faster rate of switching
to depression when administered for acute mania,77,78 a
possible consequence of the higher and prolonged occu-
pancy of D2 receptors observed with haloperidol.79,80

The dopamine antagonism of olanzapine and quetia-
pine may be responsible for antimanic effects but also, in
concert with 5-HT2A antagonism, may account for mood-
stabilizing properties of these drugs. Many unimodal anti-
depressants that do not antagonize D2 receptors have been
reported to induce manic symptoms. As excessive dopa-
mine may underlie the expression of manic symptoms, it
may be advantageous that olanzapine and quetiapine con-
comitantly block dopamine D2 receptors and dampen do-
pamine signaling in areas that are rich in D2 receptors,
such as the limbic system and basal ganglia, thus prevent-
ing the dopamine-induced switching to hypomania. Al-
ternative mechanisms, such as D2 partial agonism, may in
the future prove useful in providing a similar mood-
stabilizing effect. However, the clinical effects of such
agents have yet to be demonstrated in bipolar depression.

Alternative Mechanisms of Action
An effective agent in bipolar depression may act

through multiple mechanisms. Although this has not been

the subject of many studies to date, it will undoubtedly
be explored in future research. Although the exact in-
volvement of components such as second messenger sig-
naling pathways in the neurobiology of bipolar disorder
is unclear, it is of interest to note some commonality
among effects of SSRIs, olanzapine, and quetiapine on
such pathways.

Quetiapine has activity at targets as diverse as neuro-
tensin, glutamate receptors, and BDNF.81 It is not thought
that agents such as olanzapine or quetiapine can directly
inhibit glutamate receptors, but quetiapine exposure has
been associated with altered expression of the glutamate
receptor subunits.82 Preclinical studies have shown re-
duced glutamate release in the prefrontal cortex following
acute or chronic SSRI administration.83 Another point of
commonality among these agents is their effect on expres-
sion of immediate-early genes. Elevations of c-Fos in lim-
bic areas have also been demonstrated with fluoxetine,84

olanzapine,85 and quetiapine.86

CONCLUSION

Multiple neurotransmitter targets appear to mediate the
mechanism of action of agents used to treat bipolar de-
pression. Reviewing the receptor targets of those agents
that have demonstrated efficacy in bipolar depression re-
veals certain points of commonality (Table 1; Figure 2).
Although the SSRIs predominantly act by increasing sero-
tonin levels, they also appear to down-regulate 5-HT2A re-
ceptors in order to mediate effective antidepressant ac-
tions. Similarly, agents such as olanzapine and quetiapine
antagonize 5-HT2A receptors, in addition to their dopamine
D2 receptor blockade. It would seem probable that a re-
gionally selective balance between the dopamine and sero-
tonin systems is required to stabilize mood, and it would
be predicted that other agents with similar pharmacologic
profiles would also provide similar clinical efficacy. Since
excessive dopamine in the mesolimbic system may under-
lie the expression of manic symptoms, it may be advan-
tageous that olanzapine and quetiapine concomitantly
dampen dopamine signaling in mesolimbic pathways, thus
preventing the dopamine-induced switching to hypomania

Table 1. Key Features of Receptor Profiles of Agents That Are Effective in Bipolar Depression
Agent(s) Serotonin Norepinephrine Dopamine

SSRIs Block 5-HT reuptake Some inhibition of norepinephrine reuptake Some inhibition of dopamine reuptake
Down-regulate presynaptic/ Increase dopamine D3 receptors

activate postsynaptic 5-HT1A receptors
Down-regulate 5-HT2A receptors

Olanzapine 5-HT2A receptor antagonist α1-Adrenergic receptor antagonist Dopamine D2 receptor antagonist
5-HT1A receptor partial agonist
Down-regulates 5-HT2A receptors

Quetiapine 5-HT2A antagonist α2b Receptor antagonist Dopamine D2 receptor antagonist
Down-regulates 5-HT2A receptors
5-HT1A receptor partial agonist

Abbreviations: 5-HT = serotonin, SSRI = selective serotonin reuptake inhibitor.
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that can occur with unimodal antidepressants. It appears
that olanzapine and quetiapine—through their neuro-
transmitter antagonism of both 5-HT2A and D2 receptors—
represent effective mood-stabilizing agents.

Drug names: aripiprazole (Abilify), bromocriptine (Parlodel and
others), bupropion (Wellbutrin and others), citalopram (Celexa and
others), clozapine (Clozaril, FazaClo, and others), desipramine
(Norpramin and others), duloxetine (Cymbalta), fluoxetine (Prozac
and others), haloperidol (Haldol and others), imipramine (Tofranil and
others), lithium (Eskalith, Lithobid, and others), mirtazapine (Remeron
and others), nefazodone (Serzone and others), olanzapine (Zyprexa),
olanzapine-fluoxetine (Symbyax), paroxetine (Paxil, Pexeva, and oth-
ers), pindolol (Visken and others), pramipexole (Mirapex), quetiapine
(Seroquel), risperidone (Risperdal), sertraline (Zoloft), tranylcypro-
mine (Parnate), venlafaxine (Effexor), ziprasidone (Geodon).
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