# The Role of Dopamine in Obsessive-Compulsive Disorder: Preclinical and Clinical Evidence

## Damiaan Denys, M.D., Ph.D.; Joseph Zohar, M.D.; and Herman G. M. Westenberg, Ph.D.

Obsessive-compulsive disorder (OCD) is a frequent and chronic psychiatric disorder that has been linked closely to the serotonin system mainly because of the antiobsessional efficacy of selective serotonin reuptake inhibitors (SSRIs). A limitation of the serotonin hypothesis of OCD is that a substantial number of the patients with OCD show no significant improvement after an adequate trial with SSRIs. There is substantial evidence that these patients may benefit from addition of antipsychotics to their ongoing SSRI treatment, suggesting that dopamine also might play a role in the pathophysiology of OCD. In this review, the preclinical and clinical evidence on the role of dopamine in OCD is summarized. *(J Clin Psychiatry 2004;65[suppl 14]:11–17)* 

bsessive-compulsive disorder (OCD) is a chronic psychiatric disorder characterized by recurrent persistent thoughts (obsessions) and/or repetitive compulsory behaviors (compulsions). Over the past 2 decades, it has been suggested that OCD might be related to the functioning of brain serotonin systems. This hypothesis is based largely on the notion that selective serotonin reuptake inhibitors (SSRIs) possess antiobsessional efficacy.<sup>1-3</sup> There is now growing evidence that the dopamine system may be involved in OCD as well.<sup>4-6</sup> In this article, the preclinical and clinical evidence supporting the role for dopamine in the pathophysiology of OCD will be reviewed. Evidence for the involvement of dopamine in OCD is derived from studies using animal models of OCD and from clinical studies using neurochemical, pharmacologic, genetic, and neuroimaging strategies.

#### ANIMAL MODELS

Campbell and colleagues<sup>7</sup> have investigated the behavioral consequences of transgenic stimulation of a regional subpopulation of the dopamine neurons that express the dopamine-1 (D<sub>1</sub>) receptor in the cortex and amygdala by generating mice that express an intracellular form of cholera toxin. The study suggests that chronic stimulation of these D<sub>1</sub>-expressing neurons induces complex compulsive behavior that resembles symptoms of OCD in humans.<sup>8</sup> Although these mice were resistant to behavioral inhibition by a D<sub>1</sub> receptor antagonist and supersensitive to the D<sub>2</sub> receptor antagonist sulpiride,<sup>9</sup> Campbell and colleagues<sup>10,11</sup> suggested that chronic potentiation of cortical and limbic D<sub>1</sub>-expressing neurons may cause obsessive-compulsive behaviors.

In another animal model, in which rats are chronically treated with the selective  $D_{2/3}$  receptor agonist quinpirole, a ritual-like set of behavioral acts resembling OCD checking behavior was observed.<sup>12-15</sup> Postmortem analyses in these animals revealed increased dopamine tissue levels in the nucleus accumbens and right prefrontal cortex.<sup>16</sup> Joel and Avisar<sup>17</sup> developed a rat model of OCD based on the hypothesis that a deficient response feedback mechanism underlies obsessions and compulsions. Rats undergoing extinction of lever-pressing for food after the attenuation of an external feedback for this behavior exhibit excessive lever-pressing unaccompanied by an attempt to collect a reward, which may be analogous to the excessive and unreasonable behavior seen in OCD. Administration of the D<sub>1</sub> receptor antagonist SCH 23390 reduced the number of compulsive lever-presses without affecting the number of lever-presses followed by an attempt to collect a reward.<sup>18</sup> On the basis of electrophysiologic data, Joel and Doljansky<sup>18</sup> suggested that compulsive lever-pressing depends on a phasic decrease in stimulation of D<sub>1</sub> receptors.<sup>18</sup> These data, using putative animal models of OCD, suggest a role of dopamine,

From the Rudolf Magnus Institute of Neuroscience, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands (Drs. Denys and Westenberg), and the Division of Psychiatry, Chaim Sheba Medical Center, Tel Hashomer, Israel (Dr. Zohar).

This article is derived from the proceedings of the 6th International Obsessive-Compulsive Disorder Conference "Beyond Refractory Obsessions and Anxiety States: Toward Remission," which was held November 13–15, 2003, in Lanzarote, Spain, and supported by an unrestricted educational grant from Solvay Pharmaceuticals.

Corresponding author and reprints: Damiaan Denys, M.D., Ph.D., UMC, Dept. of Psychiatry (B.01.206), P.O. Box 85500, 3508 GA Utrecht, the Netherlands (e-mail: D.A.J.P.denys@azu.nl).

in particular of the  $D_1$  and  $D_2$  receptors, in the mechanism underlying compulsive behavior.

### DOPAMINE AND METABOLITE CONCENTRATIONS IN HUMANS

Baseline measures of dopamine and its metabolite homovanillic acid (HVA) in psychotropic-naive patients may provide direct evidence for a possible role of dopamine in OCD. Thoren and colleagues<sup>19</sup> assessed HVA in cerebrospinal fluid (CSF) levels before and after 3 weeks of treatment with clomipramine but found no change. Benkelfat and coworkers<sup>20</sup> found no differences between the mean plasma HVA level of 13 medication-free patients with OCD and 29 normal controls. Swedo et al.,<sup>21</sup> examining CSF levels of HVA in 43 children with primary OCD, reported that CSF HVA levels were not significantly related to OCD symptoms and did not correlate with improvement following 5 weeks of treatment with clomipramine. Hollander et al.,<sup>22</sup> on the other hand, observed a significant decrease in plasma HVA in 12 OCD patients relative to 10 controls following fenfluramine treatment, and Zahn et al.<sup>23</sup> showed that CSF metabolites of serotonin and dopamine, but not of norepinephrine, were positively correlated with electrodermal responsivity in a reaction time task in 43 adolescents and children with OCD.

Marazziti et al.<sup>24</sup> measured platelet sulfotransferase activity in 17 drug-free OCD patients and an equal number of healthy controls. Sulfotransferase is an enzyme involved in the catabolism of catecholamines such as dopamine and has similar kinetic characteristics in brain and platelets. Their results showed a higher level of sulfotransferase activity in OCD patients compared with control subjects, suggesting an increased dopaminergic neurotransmission in OCD.

In summary, the neurochemical studies on the role of dopamine metabolites in OCD patients have, by and large, yielded no evidence for an abnormal dopamine function in OCD.

#### PHARMACOLOGIC CHALLENGE TESTS

Another approach to assessing the functioning of the dopaminergic system is the evaluation of the behavioral and neuroendocrine effects response to administration of indirect (cocaine and amphetamine) or direct (apomorphine [APO] and bromocriptine) dopamine receptor agonists. Cocaine, a dopamine transporter blocker, elevates synaptic dopamine levels and increases the dopamine transporter density.<sup>25</sup> It has been reported that chronic use of cocaine may be associated with stereotyped examining, searching and sorting behaviors, and an exacerbation of obsessive-compulsive symptoms.<sup>26–30</sup> Moreover, cocaine-abusing patients are at increased risk for the later development of OCD.<sup>31</sup> Methylphenidate and amphetamine have

been reported to exacerbate or induce<sup>30,32–36</sup> as well as to improve<sup>37–39</sup> OCD symptoms. A limitation of the use of cocaine, methylphenidate, and amphetamine as dopaminergic probes is that they also release serotonin and nor-epinephrine.

Pitchot et al.<sup>40</sup> assessed the growth hormone (GH) response to 0.5 mg of APO in 8 drug-free OCD patients and 8 healthy male volunteers. No difference in mean GH peak response was found, suggesting that the dopaminergic function was not altered in OCD. In contrast, Brambilla et al.,<sup>41</sup> studying 15 patients with OCD and 15 age/sex-matched controls, found a blunted GH response to APO in OCD patients, hinting at a postsynaptic dopamine receptor subsensitivity. In the same sample, however, cortisol (CORT) responses to stimulation with APO were not different between the 2 groups.<sup>42</sup> Longhurst et al.43 examined the effects of catecholamine depletion in 6 drug-free patients with the tyrosine hydroxylase inhibitor alpha-methyl-para-tyrosine (AMPT) and found no significant changes in obsessive-compulsive symptom severity as compared with placebo. Although bromocriptine, a selective dopamine receptor agonist, has been shown to induce stereotypies in animals, one report describes an improvement of obsessive-compulsive symptoms in OCD patients.<sup>44</sup> Results from pharmacologic challenge studies with dopamine receptor agonists in OCD are as yet inconsistent, but there are indications that obsessive-compulsive symptoms may be related to increased dopamine neurotransmission.

#### PHARMACOTHERAPY

Indirect evidence for a role of dopamine in OCD comes from treatment studies using pharmacologic agents that modulate the dopaminergic activity in the brain.

#### Antipsychotics in Monotherapy

Three years after its introduction, chlorpromazine was tested in 75 outpatients with obsessional neurosis and allied disorders in a placebo-controlled trial.45 A significant response to chlorpromazine as compared with placebo was observed in 27 patients (36%), but it was judged to be disappointing in relieving compulsive symptoms. Ever since, no placebo-controlled trial with a typical antipsychotic drug has been conducted in OCD. Except for some case reports,<sup>46–50</sup> typical antipsychotics in monotherapy are considered to be ineffective in OCD, mainly on grounds of individual clinical experience. McDougle et al.<sup>51</sup> assessed the efficacy of clozapine monotherapy in 12 adults with refractory OCD in a 10-week, open-label trial with clozapine but found no significant change. There have been no placebo-controlled trials with atypical antipsychotics, such as risperidone, olanzapine, quetiapine, or ziprasidone, as monotherapy for OCD.

| Year of                  |                                 |                      |    |              | Trial      | YBOCS Score | Responders, |
|--------------------------|---------------------------------|----------------------|----|--------------|------------|-------------|-------------|
| Publication              | Author                          | Design               | Ν  | Dose, mg/day | Length, wk | Decrease, % | Ñ (%)       |
| Risperidone <sup>a</sup> |                                 |                      |    |              |            |             |             |
| 1995                     | McDougle et al <sup>90</sup>    | Open                 | 3  | 1            | 1-4        | 55          | 3 (100)     |
| 1996                     | Saxena et al <sup>91</sup>      | Open                 | 21 | 0.5 - 8.0    | 3          | NA          | 14 (67)     |
| 1997                     | Stein et al <sup>92</sup>       | Open                 | 8  | 1-2          | 4          | 22          | 3 (37)      |
| 2000                     | Pfanner et al <sup>93</sup>     | Open                 | 20 | 1-3          | 8          | 31          | 15 (75)     |
| 2000                     | McDougle et al <sup>94</sup>    | Double-blind placebo | 20 | 1–7          | 6          | 29          | 11 (55)     |
| 2002                     | Baxter et al <sup>95</sup>      | Double-blind placebo | 10 | 1            | 9          | 40          | NA          |
| 2003                     | Hollander et al <sup>96</sup>   | Double-blind placebo | 10 | 0.5-3.0      | 8          |             | 4 (40)      |
| Olanzapine <sup>b</sup>  |                                 | •                    |    |              |            |             |             |
| 1999                     | Weiss et al <sup>97</sup>       | Open                 | 10 | 1.25-20.00   | 8          | 40          | 7 (70)      |
| 2000                     | Koran et al <sup>98</sup>       | Open                 | 10 | 2.5 - 10.0   | 8          | 16          | 3 (30)      |
| 2000                     | Bogetto et al <sup>99</sup>     | Open                 | 23 | 5            | 12         | 30          | NA          |
| 2001                     | Francobandiera <sup>100</sup>   | Open                 | 9  | 2.5 - 5.0    | 6          | 38          | 6 (66)      |
| 2002                     | Crocq et al <sup>101</sup>      | Open                 | 8  | 5-15         | 4–74       |             | 7 (88)      |
| 2003                     | D'Amico et al <sup>102</sup>    | Open                 | 21 | 10           | 12         | 26          | 7 (33)      |
| 2004                     | Bystritsky et al <sup>103</sup> | Double-blind placebo | 13 | 5-20         | 6          | 19          | 6 (46)      |
| 2004                     | Shapira et al <sup>54</sup>     | Double-blind placebo | 22 | 5-10         | 6          | ± 25        | 9 (41)      |
| Quetiapine <sup>c</sup>  | •                               | •                    |    |              |            |             |             |
| 2002                     | Mohr et al <sup>104</sup>       | Open                 | 8  | 50-300       | 6          | 21          | 4 (50)      |
| 2002                     | Atmaca et al <sup>105</sup>     | Single-blind placebo | 14 | 50-200       | 8          | 56          | 10(71)      |
| 2002                     | Denys et al <sup>106</sup>      | Open                 | 10 | 200          | 8          | 35          | 7 (70)      |
| 2003                     | Sevincok and Topuz55            | Open                 | 8  | 150          | 10         | 27          | 2 (25)      |
| 2004                     | Denys et al <sup>109</sup>      | Double-blind placebo | 20 | 200-300      | 8          | 34          | 8 (40)      |

For all olanzapine studies, total N = 92 and mean YBOCS score decrease = 55%. <sup>b</sup>For all olanzapine studies, total N = 116 and mean YBOCS score decrease = 27%.

For all quetiapine studies, total N = 110 and mean YBOCS score decrease = 24%.

Abbreviations: NA = not available, YBOCS = Yale-Brown Obsessive-Compulsive Scale.

It is of note that de novo emergence or exacerbation of OCD symptoms during treatment with antipsychotics has been described extensively in patients with psychotic disorders. Lykouras et al.<sup>52</sup> have recently reviewed the reported cases of OCD symptoms induced by atypical antipsychotics.

#### Antipsychotics in Addition to Selective Serotonin Reuptake Inhibitors

Addition of pimozide and haloperidol to SSRIs proved effective for patients who were refractory to treatment, in particular for patients with comorbid chronic tic disorders or schizotypal personality disorders.<sup>53</sup> Following the successful combination of typical antipsychotics with SSRIs for treatment-refractory patients, there were a number of studies combining atypical antipsychotics with SSRIs (Table 1). Although 2 negative studies have been published, 54,55 risperidone, olanzapine, and quetiapine appear to be efficacious in addition to SSRIs for therapyrefractory patients at low doses within 6 to 8 weeks. Recently, in an open trial, Metin et al.<sup>56</sup> evaluated the efficacy of 325 mg/day of amisulpiride, a selective dopamine  $D_{2/3}$ antagonist, to augment the effect of SSRI treatment in 20 patients with treatment-resistant OCD and observed a significant improvement in 95% of the patients.

#### **Mechanism of Action?**

It is intriguing that antipsychotics in monotherapy lack efficacy in OCD, while they are capable of inducing de novo OCD symptoms in psychotic disorders and are efficacious in combination with SSRIs in some patients with OCD. It has been proposed that serotonin-2A  $(5-HT_{2A})$  receptor antagonism exacerbates obsessivecompulsive symptoms by increasing the firing rate of the dopamine neurons, whereas D<sub>2</sub> receptor antagonism reduces obsessive-compulsive symptoms through inhibition of the dopamine neurons.<sup>57</sup> Zhang et al.<sup>58,59</sup> have shown in rats that the combination of olanzapine and fluoxetine may increase synergistically extracellular dopamine and noradrenaline levels in the prefrontal cortex, and Denys et al.<sup>60</sup> found that the combination of quetiapine and fluvoxamine may cause a synergistic dopamine increase in the prefrontal cortex and thalamus. Since the combination of antipsychotics and SSRIs does not result in augmented serotonin levels, it is unlikely that an altered serotonergic neurotransmission is underlying the clinical efficacy of this combination. Additional research is warranted to determine whether changes in extracellular dopamine levels may account for the clinical efficacy of the augmentation strategy with atypical antipsychotics in OCD.

#### NEUROIMAGING

In vivo neuroimaging of dopamine transporters and receptors with positron emission tomography (PET) or single photon emission computer tomography (SPECT) offers another tool with which to probe the dopaminergic function in OCD. Sawle et al.<sup>61</sup> did not find an alteration in

| Table 2. Overview of Do | pamine-Related Association | Studies in Obsessive-Com | pulsive Disorder ( | OCD) |
|-------------------------|----------------------------|--------------------------|--------------------|------|
|                         |                            |                          | paror +            | 0000 |

|                                                    | Var of       |                                                              |                                                                    |                                                                                     |  |  |  |
|----------------------------------------------------|--------------|--------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|
| Polymorphism                                       | Publication  | Author                                                       | Ν                                                                  | Results                                                                             |  |  |  |
| Dopamine Transporter                               |              |                                                              |                                                                    |                                                                                     |  |  |  |
| 40-base-pair repeat<br>in the DAT 1 gene           | 1998         | Billett et al <sup>72</sup>                                  | 100 OCD patients and controls                                      | Negative                                                                            |  |  |  |
| 40-base-pair repeat<br>in the DAT 1 gene           | 2000         | Frisch et al <sup>66</sup>                                   | 75 OCD patients and 172 controls                                   | Negative                                                                            |  |  |  |
| 40-base-pair repeat<br>in the DAT 1 gene           | 2003         | Hemmings et al <sup>67</sup>                                 | 71 OCD patients and 129 controls                                   | Negative                                                                            |  |  |  |
| D <sub>2</sub> receptor                            |              |                                                              |                                                                    |                                                                                     |  |  |  |
| Three exons of the<br>DRD2 gene, 4, 5, 6           | 1994         | Novelli et al <sup>71</sup>                                  | 45 OCD patients and 26 controls                                    | Negative                                                                            |  |  |  |
| Taq-IA                                             | 1996         | Nicolini et al <sup>69</sup>                                 | 66 OCD patients and 54 controls                                    | OCD patients + tics had a higher frequency<br>of Taq I A2 allele (p = .014)         |  |  |  |
| Taq-IA and the serine/<br>cysteine variation       | 1998         | Billett et al <sup>72</sup>                                  | 100 OCD patients and controls                                      | Negative                                                                            |  |  |  |
| Taq-IA and the serine/<br>cysteine variation       | 2004         | Denys et al <sup>70</sup>                                    | 150 OCD patients and 150 controls                                  | Male OCD patients had a higher<br>frequency of Taq I A2 allele (p = .020)           |  |  |  |
| D <sub>3</sub> receptor                            |              |                                                              |                                                                    |                                                                                     |  |  |  |
| Msc I in the first exon<br>Msc I in the first exon | 1994<br>1996 | Catalano et al <sup>68</sup><br>Nicolini et al <sup>69</sup> | 97 OCD patients and 97 controls<br>67 OCD patients and 54 controls | Negative<br>Negative                                                                |  |  |  |
| Msc I in the first exon                            | 1998         | Billett et al72                                              | 100 OCD patients and controls                                      | Negative                                                                            |  |  |  |
| D <sub>4</sub> receptor                            |              |                                                              |                                                                    |                                                                                     |  |  |  |
| 13 base pair deletion in<br>the first exon         | 1996         | Di Bella et al <sup>75</sup>                                 | 157 OCD patients and 162 controls                                  | Negative                                                                            |  |  |  |
| 48-base-pair repeat                                | 1997         | Cruz et al <sup>73</sup>                                     | 12 OCD patients + tics and 49 patients                             | OCD patients + tics had a higher<br>prevalence of the 7-fold variant ( $p = 0.18$ ) |  |  |  |
| 48-base-pair repeat                                | 1998         | Billett et al <sup>72</sup>                                  | 100 OCD patients and controls                                      | Negative                                                                            |  |  |  |
| 48-base-pair repeat                                | 2000         | Frisch et al <sup>60</sup>                                   | 75 OCD patients and 172 controls                                   | Negative                                                                            |  |  |  |
| 48-base-pair repeat                                | 2003         | Hemmings et al <sup>67</sup><br>Millet et el <sup>74</sup>   | 71 OCD patients and 129 controls                                   | An absence of transmission of the allele 2                                          |  |  |  |
| 48-base-pair repear                                | 2005         | Williet et al                                                | 55 1108                                                            | (p = .005)                                                                          |  |  |  |
| COMT                                               |              |                                                              |                                                                    |                                                                                     |  |  |  |
| Val-158-Met substitution                           | 1997         | Karayiorgou et al <sup>76</sup>                              | 73 OCD patients and 148 controls                                   | Male OCD patients had a higher frequency<br>of LL genotype (p = .0002)              |  |  |  |
| Val-158-Met substitution                           | 1998         | Ohara et al <sup>81</sup>                                    | 17 OCD patients and 135 controls                                   | Negative                                                                            |  |  |  |
| Val-158-Met substitution                           | 1999         | Karayiorgou et al <sup>77</sup>                              | 110 nuclear OCD families                                           | Preferential transmission of the L allele<br>in male OCD patients ( $p = .0057$ )   |  |  |  |
| Val-158-Met substitution                           | 2000         | Schindler et al <sup>80</sup>                                | 72 OCD patients/parent trios                                       | A tendency for association with<br>homozygosity at COMT locus (p = .056)            |  |  |  |
| Val-158-Met substitution                           | 2002         | Alsobrook et al <sup>78</sup>                                | 56 OCD patients and 112 parents                                    | Female OCD patients had a higher<br>frequency of LL genotype (p = .049)             |  |  |  |
| Val-158-Met substitution                           | 2001         | Niehaus et al <sup>79</sup>                                  | 54 OCD patients and 54 controls                                    | OCD patients had a higher frequency<br>of H/L genotype ( $p = .0017$ )              |  |  |  |
| $C \rightarrow T$ transition                       | 2001         | Kinnear et al107                                             | 48 OCD patients and 48 controls                                    | Negative                                                                            |  |  |  |
| Val-158-Met substitution                           | 2004         | Denys et al <sup>70</sup>                                    | 150 OCD patients and 150 controls                                  | Male OCD patients had a higher frequency of L alleles ( $p = .0035$ )               |  |  |  |
| Val-158-Met substitution                           | 2003         | Erdal et al <sup>82</sup>                                    | 59 OCD patients and 114 controls                                   | Negative                                                                            |  |  |  |
| Val-158-Met substitution                           | 2004         | Meira-Lima et al <sup>108</sup>                              | 79 OCD patients and 202 controls                                   | Negative                                                                            |  |  |  |
| Abbreviations: $COMT = ca$                         | techol-O-met | hyl transferase, DAT                                         | = dopamine transporter.                                            |                                                                                     |  |  |  |

[<sup>18</sup>F]-6-Fluorodopa uptake into the caudate and putamen in a small (PET) study involving 6 OCD patients with obsessional slowness. A decrease in [<sup>18</sup>F]-6-Fluorodopa uptake is believed to reflect a reduction in the number of nigrostriatal dopaminergic neurons. Van der Wee et al.<sup>62</sup> found higher binding ratios of [<sup>123</sup>I] Beta-CIT to the dopamine transporter in the left basal ganglia in 15 drug-naive patients with OCD. Kim et al.<sup>63</sup> found an increased dopamine transporter binding ratio in the right basal ganglia and a tendency toward an increased dopamine transporter binding ratio in the left basal ganglia with [<sup>123</sup>I] IPT SPECT in 15 OCD patients. Pogarell et al.,<sup>64</sup> on the other hand, did not detect significant differences in striatal dopamine transporter [<sup>123</sup>I] Beta-CIT binding between 7 patients and 10 controls. Finally, Denys et al.<sup>65</sup> observed a decreased [<sup>123</sup>I] IBZM binding in the left caudate in 10 OCD patients, suggesting a down-regulated dopamine D<sub>2</sub> receptor. Altogether, these findings indicate that the dopamine system in the basal ganglia could be involved in OCD. Higher dopamine transporter densities in tandem with a down-regulation of the D<sub>2</sub> receptor suggest higher synaptic concentrations of dopamine in the basal ganglia in OCD.

#### **ASSOCIATION STUDIES**

A number of candidate gene studies have been conducted in order to elucidate the contribution of the dopamine system in OCD (Table 2). Investigations of the role of the dopamine transporter and  $D_3$  receptor showed no significant association between a particular allele and OCD.<sup>66–69</sup> Except for the TAQ I A2 allele that was found to be associated with OCD patients and tics in male patients,<sup>69,70</sup> no statistically significant differences in allele frequencies or genotype between OCD patients and controls were found with regard to the  $D_2$  receptor.<sup>71,72</sup> Cruz et al.<sup>73</sup> and Millet et al.<sup>74</sup> found an association for the  $D_4$ receptor, but other reports were negative.<sup>66,67,72,75</sup>

The role of catechol-O-methyl transferase (COMT) has been extensively investigated in OCD since COMT is an enzyme that has a crucial role in the elimination of dopamine, and higher dopamine levels may be implicated in OCD. Karayiorgou et al.<sup>76,77</sup> found evidence for an association between the low-activity COMT allele and OCD in male OCD patients in a case-control study and a familybased study, whereas Alsobrook et al.78 found evidence pointing to an association between the low-activity COMT allele and OCD in female OCD patients. Niehaus et al.79 reported a preponderance of COMT high/low heterozygotes in an Afrikaner population of 54 OCD patients but did not observe gender differences. Schindler et al.<sup>80</sup> found no association between any particular allele and OCD but found a tendency for an association with homozygosity at the COMT locus. Ohara et al.<sup>81</sup> did not find any association in a small sample of 24 Japanese patients and neither did Erdal et al.<sup>82</sup> in a sample of 59 Turkish patients. In line with the study by Karayiorgou et al.,<sup>77</sup> Denys et al.<sup>70</sup> found a higher frequency of the low-activity COMT in male OCD patients. On the other hand, a recent meta-analysis<sup>83</sup> of the COMT gene in 144 OCD patients and 337 controls showed insufficient evidence to support an association.

#### **A HYPERDOPAMINERGIC STATE?**

Despite some inconsistencies, in general, the results from most studies hint at an association between OCD and increased midbrain dopamine neurotransmission. The hypothesis of increased dopamine neurotransmission in the basal ganglia is in agreement with various working hypotheses of the pathophysiology of OCD such as the hyperactive corticostriatal model, the amygdalocentric model, or the model of behavioral addiction in OCD. The corticostriatal working model of OCD suggests an imbalance of the direct versus indirect pathway that produces a hyperactive circuit responsible for the repetitive behaviors seen in OCD.<sup>84,85</sup> Since D<sub>1</sub> preferentially activates the direct and D<sub>2</sub> the indirect pathway, and the density of D<sub>1</sub> receptors in the basal ganglia is higher than the density of D<sub>2</sub> receptors, increased concentrations of dopamine are most likely to result in a dominant  $D_1$ -regulated direct circuit and consequently in a hyperactive corticostriatal system.

In the amygdalocentric model, the acquisition and expression of conditioned fear mediated by the amygdala are believed to be actively inhibited by feedback mechanisms from the medial prefrontal cortex.<sup>86</sup> One way to understand OCD is that the normal cortical inhibition of the amygdala is malfunctioning and that the anxiety responses induced by the amygdala therefore become more intrusive and chronic in patients with OCD. Rosenkranz and Grace<sup>87</sup> demonstrated that the response of the amygdala to cortical inhibition is potently affected by alterations of the meso-limbic dopaminergic system. When dopamine is increased, the ability of the prefrontal cortex to suppress the affective responses generated in the amygdala is attenuated.

A number of phenomenological characteristics of OCD such as loss of voluntary control, repetitiveness, compulsiveness, reinforcement of behavior, aberrant habit learning, and uncertainty resemble addictive behavior and may be understood within the conceptual framework of "behavioral addiction."<sup>88</sup> In particular, ritualistic-compulsive actions share similarities with addictive behavior. There is little doubt that midbrain dopamine has positive reinforcing properties, and it is liable that the reinforcing nature of compulsions originates from increased dopamine transmission. Recently, Fiorillo et al.<sup>89</sup> demonstrated that dopamine neurons show increased firing during prolonged periods of uncertainty. Subjective uncertainty is a main feature of pathologic gambling and plays a major role in OCD.

#### CONCLUSION

To explore these hypotheses, more direct studies of the dopamine function in OCD are needed, in particular, measurements of dopamine and its metabolite and pharmacologic challenge studies with dopaminergic probes during behavioral stimulation. To date, there is sufficient preclinical and clinical evidence that implicates the dopamine system in OCD, but more studies are warranted to understand the function of dopamine in the pathophysiology of OCD.

*Drug names:* apomorphine (Apokyn), bromocriptine (Parlodel and others), chlorpromazine (Thorazine, Sonazine, and others), clomipramine (Anafranil and others), clozapine (Fazaclo, Clozaril, and others), fluoxetine (Prozac and others), haloperidol (Haldol and others), methylphenidate (Metadate, Ritalin, and others), olanzapine (Zyprexa), pimozide (Orap), quetiapine (Seroquel), risperidone (Risperdal), ziprasidone (Geodon).

*Disclosure of off-label usage:* The authors have determined that, to the best of their knowledge, apomorphine, bromocriptine, chlorpromazine, clozapine, haloperidol, methylphenidate, olanzapine, pimozide, quetiapine, risperidone, and ziprasidone are not approved by the U.S. Food and Drug Administration for the treatment of obsessive-compulsive disorder.

#### REFERENCES

1. Barr LC, Goodman WK, Price LH, et al. The serotonin hypothesis of obsessive compulsive disorder: implications of pharmacologic challenge studies. J Clin Psychiatry 1992;53(4, suppl):17-28

- Pigott TA. OCD: where the serotonin selectivity story begins. J Clin Psychiatry 1996;57(suppl 6):11–20
- Blier P, de Montigny C. Possible serotonergic mechanisms underlying the antidepressant and anti-obsessive-compulsive disorder responses. Biol Psychiatry 1998;44:313–323
- Goodman WK, McDougle CJ, Price LH. The role of serotonin and dopamine in the pathophysiology of obsessive compulsive disorder. Int Clin Psychopharmacol 1992;7(suppl 1): 35–38
- McDougle CJ. Update on pharmacologic management of OCD: agents and augmentation. J Clin Psychiatry 1997;58(suppl 12):11–17
- Goodman WK, McDougle CJ, Price LH, et al. Beyond the serotonin hypothesis: a role for dopamine in some forms of obsessive compulsive disorder? J Clin Psychiatry 1990;51(8, suppl):36–43
- Campbell KM, de Lecea L, Severynse DM, et al. OCD-like behaviors caused by a neuropotentiating transgene targeted to cortical and limbic D1+ neurons. J Neurosci 1999;19:5044–5053
- Campbell KM, McGrath MJ, Burton FH. Behavioral effects of cocaine on a transgenic mouse model of cortical-limbic compulsion. Brain Res 1999;833:216–224
- Campbell KM, McGrath MJ, Burton FH. Differential response of corticallimbic neuropotentiated compulsive mice to dopamine D1 and D2 receptor antagonists. Eur J Pharmacol 1999;371:103–111
- McGrath MJ, Campbell KM, Parks CR, et al. Glutamatergic drugs exacerbate symptomatic behavior in a transgenic model of comorbid Tourette's syndrome and obsessive-compulsive disorder. Brain Res 2000;877:23–30
- Campbell KM, Veldman MB, McGrath MJ, et al. TS+OCD-like neuropotentiated mice are supersensitive to seizure induction. Neuroreport 2000;11:2335–2338
- Einat H, Szechtman H. Perseveration without hyperlocomotion in a spontaneous alternation task in rats sensitized to the dopamine agonist quinpirole. Physiol Behav 1995;57:55–59
- Szechtman H, Sulis W, Eilam D. Quinpirole induces compulsive checking behavior in rats: a potential animal model of obsessive-compulsive disorder (OCD). Behav Neurosci 1998;112:1475–1485
- Ben Pazi A, Szechtman H, Eilam D. The morphogenesis of motor rituals in rats treated chronically with the dopamine agonist quinpirole. Behav Neurosci 2001;115:1301–1317
- Szechtman H, Eckert MJ, Tse WS, et al. Compulsive checking behavior of quinpirole-sensitized rats as an animal model of obsessive-compulsive disorder (OCD): form and control. BMC Neurosci 2001;2:4
- Sullivan RM, Talangbayan H, Einat H, et al. Effects of quinpirole on central dopamine systems in sensitized and non-sensitized rats. Neuroscience 1998; 83:781–789
- Joel D, Avisar A. Excessive lever pressing following post-training signal attenuation in rats: a possible animal model of obsessive compulsive disorder? Behav Brain Res 2001;123:77–87
- Joel D, Doljansky J. Selective alleviation of compulsive lever-pressing in rats by D(1), but not D(2), blockade: possible implications for the involvement of D(1) receptors in obsessive-compulsive disorder. Neuropsychopharmacology 2003;28:77–85
- Thoren P, Asberg M, Bertilsson L, et al. Clomipramine treatment of obsessive-compulsive disorder, 2: biochemical aspects. Arch Gen Psychiatry 1980;37:1289–1294
- Benkelfat C, Mefford IN, Masters CF, et al. Plasma catecholamines and their metabolites in obsessive-compulsive disorder. Psychiatry Res 1991;37: 321–331
- Swedo SE, Leonard HL, Kruesi MJ, et al. Cerebrospinal fluid neurochemistry in children and adolescents with obsessive-compulsive disorder. Arch Gen Psychiatry 1992;49:29–36
- Hollander E, Stein DJ, Saoud JB, et al. Effects of fenfluramine on plasma HVA in OCD [letter]. Psychiatry Res 1992;42:185–188
- Zahn TP, Kruesi MJ, Swedo SE, et al. Autonomic activity in relation to cerebrospinal fluid neurochemistry in obsessive and disruptive children and adolescents. Psychophysiology 1996;33:731–739
- Marazziti D, Hollander E, Lensi P, et al. Peripheral markers of serotonin and dopamine function in obsessive-compulsive disorder. Psychiatry Res 1992;42: 41–51
- Little KY, Zhang L, Desmond T, et al. Striatal dopaminergic abnormalities in human cocaine users. Am J Psychiatry 1999;156:238–245
- McDougle CJ, Goodman WK, Delgado PL, et al. Pathophysiology of obsessive-compulsive disorder [letter]. Am J Psychiatry 1989;146:1350–1351
- Rosse RB, Fay-McCarthy M, Collins JP Jr, et al. The relationship between cocaine-induced paranoia and compulsive foraging: a preliminary report. Addiction 1994;89:1097–1104
- Rosse RB, Fay-McCarthy M, Collins JP Jr, et al. Transient compulsive foraging behavior associated with crack cocaine use. Am J Psychiatry

16

1993;150:155-156

- Koizumi HM. Obsessive-compulsive symptoms following stimulants. Biol Psychiatry 1985;20:1332–1333
- Satel SL, McDougle CJ. Obsessions and compulsions associated with cocaine abuse [letter]. Am J Psychiatry 1991;148:947
- Rosse RB, McCarthy MF, Alim TN, et al. Saccadic distractibility in cocaine dependent patients: a preliminary laboratory exploration of the cocaine-OCD hypothesis. Drug Alcohol Depend 1994;35:25–30
- Lemus CZ, Robinson DG, Kronig M, et al. Behavioral responses to a dopaminergic challenge in obsessive-compulsive disorder. J Anxiety Disord 1991;5: 369–373
- Kouris S. Methylphenidate-induced obsessive-compulsiveness [letter]. J Am Acad Child Adolesc Psychiatry 1998;37:135
- Kotsopoulos S, Spivak M. Obsessive-compulsive symptoms secondary to methylphenidate treatment [letter]. Can J Psychiatry 2001;46:89
- Frye PE, Arnold LE. Persistent amphetamine-induced compulsive rituals: response to pyridoxine(B6). Biol Psychiatry 1981;16:583–587
- Iyo M, Sekine Y, Matsunaga T, et al. Methamphetamine-associated obsessional symptoms and effective risperidone treatment: a case report [letter]. J Clin Psychiatry 1999;60:337–338
- Joffe RT, Swinson RP. Methylphenidate in primary obsessive-compulsive disorder. J Clin Psychopharmacol 1987;7:420–422
- Joffe RT, Swinson RP, Levitt AJ. Acute psychostimulant challenge in primary obsessive-compulsive disorder. J Clin Psychopharmacol 1991;11:237–241
- Insel TR, Hamilton JA, Guttmacher LB, et al. D-amphetamine in obsessivecompulsive disorder. Psychopharmacology (Berl) 1983;80:231–235
- Pitchot W, Hansenne M, Moreno AG, et al. Growth hormone response to apomorphine in obsessive-compulsive disorder. J Psychiatry Neurosci 1996;21:343–345
- Brambilla F, Bellodi L, Perna G, et al. Dopamine function in obsessivecompulsive disorder: growth hormone response to apomorphine stimulation. Biol Psychiatry 1997;42:889–897
- Brambilla F, Perna G, Bussi R, et al. Dopamine function in obsessive compulsive disorder: cortisol response to acute apomorphine stimulation. Psychoneuroendocrinology 2000;25:301–310
- Longhurst JG, Carpenter LL, Epperson CN, et al. Effects of catecholamine depletion with AMPT (alpha-methyl-para-tyrosine) in obsessive-compulsive disorder. Biol Psychiatry 1999;46:573–576
- Ceccherini-Nelli A, Guazzelli M. Treatment of refractory OCD with the dopamine agonist bromocriptine [letter]. J Clin Psychiatry 1994;55:415–416
- Trethowan WH, Scott PA. Chlorpromazine in obsessive-compulsive and allied disorders. Lancet 1955;268:781–785
- Hussain MZ, Ahad A. Treatment of obsessive-compulsive neurosis [letter]. Can Med Assoc J 1970;103:648
- O'Regan JB. Treatment of obsessive-compulsive neurosis [letter]. Can Med Assoc J 1970;103:650–651
- O'Regan JB. Treatment of obsessive-compulsive neurosis with haloperidol [letter]. Can Med Assoc J 1970;103:167–168
- Altschuler M. Massive doses of trifluoperazine in the treatment of compulsive rituals [letter]. Am J Psychiatry 1962;119:367–368
- Rivers-Bulkeley N, Hollender MH. Successful treatment of obsessive-compulsive disorder with loxapine [letter]. Am J Psychiatry 1982;139:1345–1346
- McDougle CJ, Barr LC, Goodman WK, et al. Lack of efficacy of clozapine monotherapy in refractory obsessive-compulsive disorder. Am J Psychiatry 1995;152:1812–1814
- Lykouras L, Alevizos B, Michalopoulou P, et al. Obsessive-compulsive symptoms induced by atypical antipsychotics: a review of the reported cases. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:333–346
- McDougle CJ, Goodman WK, Price LH, et al. Neuroleptic addition in fluvoxamine-refractory obsessive-compulsive disorder. Am J Psychiatry 1990;147: 652–654
- Shapira NA, Ward HE, Mandoki M, et al. A double-blind, placebo-controlled trial of olanzapine addition in fluoxetine-refractory obsessive-compulsive disorder. Biol Psychiatry 2004;55:553–555
- Sevincok L, Topuz A. Lack of efficacy of low doses of quetiapine addition in refractory obsessive-compulsive disorder. J Clin Psychopharmacol 2003;23: 448–450
- Metin O, Yazici K, Tot S, et al. Amisulpiride augmentation in treatment resistant obsessive-compulsive disorder: an open trial. Hum Psychopharmacol 2003;18:463–467
- Ramasubbu R. Antiobsessional effect of risperidone add-on treatment in serotonin reuptake inhibitor-refractory obsessive-compulsive disorder may be dose-dependent [letter]. Arch Gen Psychiatry 2002;59:472–473
- Zhang W, Bymaster FP. The in vivo effects of olanzapine and other antipsychotic agents on receptor occupancy and antagonism of dopamine D1, D2, D3, 5HT2A and muscarinic receptors. Psychopharmacology (Berl) 1999;141: 267–278

- Zhang W, Perry KW, Wong DT, et al. Synergistic effects of olanzapine and other antipsychotic agents in combination with fluoxetine on norepinephrine and dopamine release in rat prefrontal cortex. Neuropsychopharmacology 2000;23:250–262
- Denys D, Klompmakers AA, Westenberg HG. Synergistic dopamine increase in the rat prefrontal cortex with the combination of quetiapine and fluvoxamine. Psychopharmacology (Berl). In press
- Sawle GV, Hymas NF, Lees AJ, et al. Obsessional slowness: functional studies with positron emission tomography. Brain 1991;114(pt 5):2191–2202
- van der Wee N, Stevens H, Hardeman H, et al. Enhanced densities of dopamine but not of serotonin transporters in psychotropic-naïve patients with obsessive-compulsive disorder [abstract]. J Nucl Med 2001;42:238P
- Kim CH, Koo MS, Cheon KA, et al. Dopamine transporter density of basal ganglia assessed with [(123)I]IPT SPET in obsessive-compulsive disorder. Eur J Nucl Med Mol Imaging 2003;30:1637–1643
- Pogarell O, Hamann C, Popperl G, et al. Elevated brain serotonin transporter availability in patients with obsessive-compulsive disorder. Biol Psychiatry 2003;54:1406–1413
- Denys D, van der Wee N, Janssen J, et al. Low level of dopaminergic D2 receptor binding in obsessive-compulsive disorder. Biol Psychiatry 2004; 55:1041–1045
- 66. Frisch A, Michaelovsky E, Rockah R, et al. Association between obsessivecompulsive disorder and polymorphisms of genes encoding components of the serotonergic and dopaminergic pathways. Eur Neuropsychopharmacol 2000;10:205–209
- Hemmings SM, Kinnear CJ, Niehaus DJ, et al. Investigating the role of dopaminergic and serotonergic candidate genes in obsessive-compulsive disorder. Eur Neuropsychopharmacol 2003;13:93–98
- Catalano M, Sciuto G, Di Bella D, et al. Lack of association between obsessive-compulsive disorder and the dopamine D3 receptor gene: some preliminary considerations. Am J Med Genet 1994;54:253–255
- Nicolini H, Cruz C, Camarena B, et al. DRD2, DRD3 and 5HT2A receptor genes polymorphisms in obsessive-compulsive disorder. Mol Psychiatry 1996;1:461–465
- Denys D, van Nieuwerburgh P, Deforce D, et al. An association between dopamine system genes and obsessive-compulsive disorder. In: Denys D. On Certainty. Utrecht, The Netherlands: UMC Utrecht; 2004:163–171
- Novelli E, Nobile M, Diaferia G, et al. A molecular investigation suggests no relationship between obsessive-compulsive disorder and the dopamine D2 receptor. Neuropsychobiology 1994;29:61–63
- Billett EA, Richter MA, Sam F, et al. Investigation of dopamine system genes in obsessive-compulsive disorder. Psychiatr Genet 1998;8:163–169
- Cruz C, Camarena B, King N, et al. Increased prevalence of the sevenrepeat variant of the dopamine D4 receptor gene in patients with obsessivecompulsive disorder with tics. Neurosci Lett 1997;231:1–4
- Millet B, Chabane N, Delorme R, et al. Association between the dopamine receptor D4 (DRD4) gene and obsessive-compulsive disorder. Am J Med Genet 2003;116:55–59
- Di Bella D, Catalano M, Cichon S, et al. Association study of a null mutation in the dopamine D4 receptor gene in Italian patients with obsessivecompulsive disorder, bipolar mood disorder and schizophrenia. Psychiatr Genet 1996;6:119–121
- Karayiorgou M, Altemus M, Galke BL, et al. Genotype determining low catechol-O-methyltransferase activity as a risk factor for obsessivecompulsive disorder. Proc Natl Acad Sci U S A 1997;94:4572–4575
- Karayiorgou M, Sobin C, Blundell ML, et al. Family-based association studies support a sexually dimorphic effect of COMT and MAOA on genetic susceptibility to obsessive-compulsive disorder. Biol Psychiatry 1999;45: 1178–1189
- Alsobrook JP, Zohar AH, Leboyer M, et al. Association between the COMT locus and obsessive-compulsive disorder in females but not males. Am J Med Genet 2002;114:116–120
- Niehaus DJ, Kinnear CJ, Corfield VA, et al. Association between a catecholo-methyltransferase polymorphism and obsessive-compulsive disorder in the Afrikaner population. J Affect Disord 2001;65:61–65
- Schindler KM, Richter MA, Kennedy JL, et al. Association between homozygosity at the COMT gene locus and obsessive compulsive disorder. Am J Med Genet 2000;96:721–724
- Ohara K, Nagai M, Suzuki Y, et al. No association between anxiety disorders and catechol-O-methyltransferase polymorphism. Psychiatry Res 1998;80:145–148
- Erdal ME, Tot S, Yazici K, et al. Lack of association of catechol-Omethyltransferase gene polymorphism in obsessive-compulsive disorder. Depress Anxiety 2003;18:41–45
- Azzam A, Mathews C, Reus V. A meta-analysis of the association between the catecholamine-O-methyl-transferase gene and obsessive-compulsive disorder. Am J Med Genet 2002;114:834–835

- Saxena S, Brody AL, Schwartz JM, et al. Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. Br J Psychiatry Suppl 1998: 26–37
- Jenike MA, Baer L, Minichiello WE. Obsessive-Compulsive Disorders. Practical Management, 3rd Edition. St. Louis, Mo: Mosby; 1998
- LeDoux JE. The Emotional Brain. New York, NY: Simon & Schuster; 1996
   Rosenkranz JA, Grace AA. Dopamine-mediated modulation of odour-
- evoked amygdala potentials during pavlovian conditioning. Nature 2002;417:282–287
- Holden C. 'Behavioral' addictions: do they exist? Science 2001;294:980–982
   Fiorillo CD, Tobler PN, Schultz W. Discrete coding of reward probability
- and uncertainty by dopamine neurons. Science 2003;299:1898–1902
  90. McDougle CJ, Fleischmann RL, Epperson CN, et al. Risperidone addition in fluvoxamine-refractory obsessive-compulsive disorder: three cases. J Clin Psychiatry 1995;56:526–528
- Saxena S, Wang D, Bystritsky A, et al. Risperidone augmentation of SRI treatment for refractory obsessive-compulsive disorder. J Clin Psychiatry 1996;57:303–306
- Stein DJ, Bouwer C, Hawkridge S, et al. Risperidone augmentation of serotonin reuptake inhibitors in obsessive-compulsive and related disorders. J Clin Psychiatry 1997;58:119–122
- Pfanner C, Marazziti D, Dell'Osso L, et al. Risperidone augmentation in refractory obsessive-compulsive disorder: an open-label study. Int Clin Psychopharmacol 2000;15:297–301
- McDougle CJ, Epperson CN, Pelton GH, et al. A double-blind, placebocontrolled study of risperidone addition in serotonin reuptake inhibitorrefractory obsessive-compulsive disorder. Arch Gen Psychiatry 2000;57: 794–801
- Baxter LR, Li X, Jackson WT, et al. Adjunctive risperidone in the treatment of SSRI-refractory obsessive compulsive disorder. Presented at the annual meeting of the Society of Biological Psychiatry; May 16–18, 2002; Philadelphia, Pa
- Hollander E, Rossi NB, Sood E, et al. Risperidone augmentation in treatment-resistant obsessive-compulsive disorder: a double-blind, placebo-controlled study. Int J Neuropsychopharmacol 2003;6:397–401
- Weiss EL, Potenza MN, McDougle CJ, et al. Olanzapine addition in obsessive-compulsive disorder refractory to selective serotonin reuptake inhibitors: an open-label case series. J Clin Psychiatry 1999;60:524–527
- Koran LM, Ringold AL, Elliott MA. Olanzapine augmentation for treatmentresistant obsessive-compulsive disorder. J Clin Psychiatry 2000;61:514–517
- Bogetto F, Bellino S, Vaschetto P, et al. Olanzapine augmentation of fluvoxamine-refractory obsessive-compulsive disorder (OCD): a 12-week open trial. Psychiatry Res 2000;96:91–98
- Francobandiera G. Olanzapine augmentation of serotonin uptake inhibitors in obsessive-compulsive disorder: an open study. Can J Psychiatry 2001;46: 356–358
- Crocq MA, Leclercq P, Guillon MS, et al. Open-label olanzapine in obsessive-compulsive disorder refractory to antidepressant treatment. Eur Psychiatry 2002;17:296–297
- D'Amico G, Cedro C, Muscatello MR, et al. Olanzapine augmentation of paroxetine-refractory obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:619–623
- Bystritsky A, Ackerman DL, Rosen RM, et al. Augmentation of serotonin reuptake inhibitors in refractory obsessive-compulsive disorder using adjunctive olanzapine: a placebo-controlled trial. J Clin Psychiatry 2004;65: 565–568
- Mohr N, Vythilingum B, Emsley RA, et al. Quetiapine augmentation of serotonin reuptake inhibitors in obsessive-compulsive disorder. Int Clin Psychopharmacol 2002;17:37–40
- Atmaca M, Kuloglu M, Tezcan E, et al. Quetiapine augmentation in patients with treatment resistant obsessive-compulsive disorder: a single-blind, placebo-controlled study. Int Clin Psychopharmacol 2002;17:115–119
- Denys D, van Megen H, Westenberg H. Quetiapine addition to serotonin reuptake inhibitor treatment in patients with treatment-refractory obsessivecompulsive disorder: an open-label study. J Clin Psychiatry 2002;63: 700–703
- 107. Kinnear C, Niehaus DJ, Seedat S, et al. Obsessive-compulsive disorder and a novel polymorphism adjacent to the oestrogen response element (ERE 6) upstream from the COMT gene. Psychiatr Genet 2001;11:85–87
- Meira-Lima I, Shavitt RG, Miguita K, et al. Association analysis of the catechol-o-methyltransferase (COMT), serotonin transporter (5-HTT) and serotonin 2A receptor (5HT2A) gene polymorphisms with obsessivecompulsive disorder. Genes Brain Behav 2004;3:75–79
- Denys D, De Geus F, van Megen HJ, et al. A double-blind, randomized, placebo-controlled trial of quetiapine addition in patients with obsessivecompulsive disorder refractory to serotonin reuptake inhibitors. J Clin Psychiatry 2004;65:1040–1048