Letters to the Editor

Lack of Desipramine Toxicity With Citalopram

Sir: Selective serotonin reuptake inhibitors (SSRIs) are known to inhibit specific human hepatic cytochrome P450 (CYP) isoenzymes, which are critical in the metabolism of most medications.1 Paroxetine is thought to possess highly potent inhibiting properties for the CYP2D6 isoenzyme.2 CYP2D6 is the major enzyme involved in catabolism of many commonly used agents, including neuroleptics, antidepressants, Type IC antiarrhythmics, codeine, β-blockers, and dextromethorphan.3 Citalopram is thought to possess weak inhibition of this isoenzyme along with CYP1A2 and CYP2C19 and no inhibition of CYP3A4 (data on file, Forest Laboratories Inc., 1997).

It is difficult to measure the clinical impact of this phenomenon outside of the laboratory. Hepatic isoenzyme inhibition can lead to adverse side effects in patients receiving combinations of medications that are metabolized through these pathways. I report such an interaction in a patient taking paroxetine that disappeared when she was switched to citalopram treatment.

Case report. Ms. A, a 45-year-old white woman, met DSM-IV criteria for major depressive disorder and dysthymia and failed several trials of antidepressants from all available drug classes in addition to electroconvulsive therapy. Many agents were used in combination, and antidepressants were usually pushed to maximal dosage. There was no decrease in depression after consultation at 2 nationally ranked depression treatment programs along with ongoing weekly psychotherapy over several years with 3 different therapists.

Ms. A had a total lack of antidepressant response to concomitant pindolol, 2.5 mg t.i.d.; desipramine, 300 mg/day in divided doses; clonazepam, 1 mg b.i.d. and 2 mg h.s.; and olanzapine, 10 mg h.s., although the latter medicines helped with insomnia. Paroxetine augmentation was initiated, with titration to 40 mg/day achieved over 3 months. Ms. A developed light-headedness, ataxia, and increased confusion. The serum desipramine level was 1810 ng/mL (therapeutic range, 75–300 ng/mL). The desipramine dose was decreased to 200 mg/day in divided doses; 8 days later, her serum desipramine level was still elevated at 1665 ng/mL. The dose of paroxetine was decreased to 30 mg/day, and desipramine was decreased to 150 mg/day with marked reduction of side effects. However, Ms. A’s serum desipramine level remained elevated 13 days later at 1153 ng/mL. Paroxetine was tapered and discontinued, and desipramine was decreased to 100 mg/day in divided doses. Citalopram was begun and titrated to 40 mg/day. Ms. A’s serum desipramine level dropped into the therapeutic range, to 195 ng/mL, over the next 2 months. Her mood also was improved on clinical examination during her citalopram trial, and she has maintained a reduction in depressive symptoms over several months to date.

This case reflects likely desipramine toxicity caused by hepatic CYP2D6 isoenzyme blockade from paroxetine. This blockade appears to have been minimized by switching to citalopram. It is possible that the lower serum desipramine level still reflected mild inhibition by citalopram that was not clinically significant in this patient.

There are several alternative explanations to the lowered desipramine level described in this patient. It is possible that desipramine dosage reduction accounted for the dropping blood levels of desipramine, although the final 50-mg reduction would then have accounted for over an 80% decrease in desipramine concentration. It also is possible that the patient decreased desipramine on her own beyond my recommendations, although she denied noncompliance with her medication regimen. It would have been helpful to have obtained a blood desipramine level prior to paroxetine administration to more clearly illustrate the extent of inhibition. Further clinical examination of patients receiving combinations of tricyclic antidepressants and SSRIs may more clearly delineate the extent of these drug interactions.

REFERENCES


Adam Keller Ashton, M.D.
Williamsville, New York

Subtyping Micromanic Episodes

Sir: I read with great interest Dr. McElroy’s conceptualization of the explosivity component in intermittent explosive disorder as containing the features of what she terms a “micro-dysphoric manic episode.”1 While the idea of re-visioning explosivity as a brief manic episode is, to me, a diagnostic breakthrough with important treatment implications, her categorization of these episodes as “dysphoric” seems imprecise.

The DSM-IV (1994) lists 3 synonyms to exemplify a dysphoric mood: sadness, anxiety, or irritability.2 Webster’s Collegiate Thesaurus, however, equates dysphoria with only depressive synonyms, e.g., dejection, gloom, melancholy.3 Psychiatric clinicians could increase diagnostic precision by aligning more with the colloquial usage offered in Webster’s.

Therefore, I recommend that explosive attacks be included under the umbrella of micromania rather than microdysphoria. McElroy herself provides theoretical support for this in her statement: “DSM implies that euphoria is a core feature of mania.”4(p21) Empirical support is provided by her explosive subjects, 75% of whom “felt relieved

J Clin Psychiatry 61:2, February 2000 145
after they exploded,” and nearly half (48%) “said the acts were pleasurable.”

Along these lines, then, the following subtypes for brief manic episodes are suggested. An explosive event for a patient diagnosed with intermittent explosive disorder could be better categorized as a “micromanic episode, explosive type.” Providing that other medical reasons are ruled out, events of agitation could be identified as “micromanic episodes, agitated type.” Likewise, brief remitting episodes of irritability could be termed “microhypomanic episodes, irritable type.” And although sexual addiction is not among the current DSM nomenclature, some forms of this condition could be conceptualized as a patient’s attempt to control the recurrence of “micromanic episodes, euphoric type.” Such a conceptualization could provide theoretical justification for pharmacotherapy for this condition under guidelines similar to those suggested by McElroy1 for intermittent explosive disorder.

REFERENCES


Kevin P. Prosnick, Ph.D.
Cleveland, Ohio

Clarifying the Safety of the MAOI Diet and Pizza

Sir: We appreciated Drs. Shulman and Walker’s study1 attempting to clarify and extend our clinical experience2 demonstrating the apparent safety of ingesting at least some types of pizza along with a monoamine oxidase inhibitor (MAOI). Their studies3,4 clarifying the specifics of the MAOI diet have been an invaluable aid to all clinicians who prescribe these important antidepressant medications.

Our premise in noting the safety of MAOI-treated patients’ ingesting kosher pizza was based on the fact that kosher pizza establishments do not generally use aged cheeses as a topping. In contrast, at the time of our original letter, we contacted a number of local, nonkosher pizza establishments in our area, including a chain outlet noted in Shulman and Walker’s report.1 Cheeses considered aged were sometimes routinely used as a topping by some of these establishments. While we have not been able to find any case reports of pizza-induced hypertensive crises in reviewing the literature, we have heard of anecdotal reports of hypertensive crises seemingly related to the ingestion of nonkosher pizza. Unfortunately, we do not know if these latter, unverified cases were related to eating gourmet pizza or pizza purchased from smaller establishments versus large chain outlets or perhaps to other factors such as the freshness of the ingredients. Parenthetically, if the authors or others are aware of verified cases, it would be interesting to hear about them.

With these facts in mind, it would be useful to know specifically what types and exact amounts of cheese were used in the pizzas Shulman and Walker studied. Were they aged cheeses, and if so, why was the tyramine content so low? If they were not aged cheeses, can we safely say that their findings generalize to American pizza chain outlets? That is, do Canadian franchises of these chains use the same suppliers and same types of cheese as their American counterparts?

We hope Shulman and Walker can clarify these points, as minimizing dietary restrictions would enhance the acceptability of MAOIs to our patients. In the meantime, educating patients what to look for and ask about when ordering pizza in any setting may continue to be the safest approach.

REFERENCES


Shalom Feinberg, M.D.
Barry Holzer, M.D.
Queens, New York

Drs. Shulman and Walker Reply

Sir: Drs. Feinberg and Holzer have asked for clarification of the types of cheeses used by large pizza chain outlets. To the best of our knowledge, the cheese most commonly used is mozzarella cheese, which, strictly speaking, is an aged cheese. However, it appears to be one of the milder cheeses, and our previous analyses have shown relatively low tyramine levels in mozzarella. Our first study1 found 2.4 mg of tyramine per serving of mozzarella, and in the article recently published in the Journal2, the tyramine content was even lower at 0.5 mg per serving. Some chains report the inclusion of Parmesan cheese as a common topping, but that is not an aged cheese, and in our 1989 study1 we found a tyramine content of only 0.2 mg per serving for Parmesan cheese. Finally, one of the chains has used Romano cheese in their sauce for flavor, but in minute amounts. The tyramine content reported in our recent article3 found a minuscule amount of tyramine in Romano cheese: 0.12 mg per 30-gram serving. To the best of our knowledge, the ingredients used in the Canadian chain outlets are identical to those used by American suppliers and counterparts. We also welcome any further clarification in that area.

We did not measure the exact amounts of cheese in each of the pizzas sampled. Liberally, we used half of a medium-sized pizza as a single serving, and our total tyramine content was consistently low in all 4 pizza chain outlets studied. Thus, on the basis of our tyramine analyses of both individual cheeses and the total tyramine content of pizzas themselves, we have consistently found low tyramine levels.

Like us, Feinberg and Holzer have not found any case reports of pizza-induced hypertensive crises, but they allude to “anecdotal” reports of such crises in nonkosher pizzas. We endorse their invitation to clinicians to report any documented cases of this nature. As in all clinical medicine, we have to make judgment calls in our recommendations based on the best available evidence.1 In this particular situation, we are balancing realistic compliance concerns with quality of life and safety issues. Given all the available evidence, we believe that we can...
stand by the recommendations in our article “Refining the MAOI Diet.”

We welcome further contributions to the discussion such as those from interested clinicians like Feinberg and Holzer who have taken the trouble to investigate concerns that are of great practical relevance.

REFERENCES

Kenneth I. Shulman, M.D., S.M.
Scott E. Walker, M.Sc.Pham.
Toronto, Ontario, Canada

A Case Report of Serotonin Syndrome Associated With Combined Nefazodone and Fluoxetine

Sir: Serotonin syndrome is a potentially lethal condition caused by excessive serotonergic activity and is diagnosed by the presence of at least 3 of 10 symptoms: mental status changes (confusion, hypomania), agitation, myoclonus, hyperreflexia, diaphoresis, shivering, tremor, diarrhea, incoordination, and fever. It most frequently develops after coadministration of 2 serotonergic agents, 1 of which is often (but not always), a monoamine oxidase inhibitor. To our knowledge, the following is the first report of serotonin syndrome involving the combination of nefazodone, a 5-HT 2 antagonist, and fluoxetine, a selective serotonin reuptake inhibitor (SSRI).

Case report. Mr. A, a 50-year-old man with a history of major depressive disorder, developed sexual dysfunction after several months of treatment with fluoxetine, 60 mg/day, and requested a change in antidepressant medication. A decision was made to switch him to nefazodone. He was instructed to taper his dose of fluoxetine over 4 days and then begin nefazodone, 100 mg b.i.d. Mr. A. reduced his dose of fluoxetine to 40 mg for 2 days but then, for unknown reasons, added nefazodone at the above dose. He took the medications concurrently until he was admitted to the hospital 6 days later.

One day prior to admission, Mr. A developed lethargy, inattention, ataxia, disorientation, vomiting, and myoclonus. On the day of admission, he also experienced visual hallucinations of tiny elephants walking across his computer keyboard. Mr.'s medical history was significant for multiple myeloma in remission for 8 years. He had been taking alpha interferon, which has poorly characterized effects on cytochrome P450 enzymes, decreased the clearance of nefazodone and one of its metabolites (such as mCPP, a potent serotonin agonist itself). Another possibility is that the patient's concurrent treatment with alpha interferon, which has poorly characterized effects on cytochrome P450 enzymes, decreased the clearance of nefazodone and one of its metabolites (such as mCPP, a potent serotonin agonist itself). Another possibility is that the patient worsened on day 2 as a result of haloperidol-induced akathisia, rather than from progression of the serotonin syndrome.

This case indicates that clinicians should be aware of nefazodone's potential for contributing to serotonin syndrome and that they should be cautious of coadministering nefazodone and an SSRI.

REFERENCES

David L. Smith, M.D.
Brant L. Wenegrat, M.D.
Palo Alto, California