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1.8 million of whom were over the age of 85 years. Given
the rapid growth of the elderly population, the prevalence
of Alzheimer’s disease is expected to increase dramati-
cally in the future. If treatments that prevent or signifi-
cantly slow the onset of the disease are not developed,
there could be as many as 13.2 million U.S. adults with
Alzheimer’s disease by the year 2050.1

Remarkably few treatments are available considering
the prevalence of Alzheimer’s disease. Moreover, the
treatments that are approved for use offer only modest
relief of cognitive and behavioral symptoms for some pa-
tients.2,3 None of the available treatments prevent the pro-
gression from mild cognitive impairment to frank demen-
tia and, ultimately, death.4 The 3 cholinesterase inhibitors
(donepezil, rivastigmine, galantamine) in wide clinical
use bolster deteriorating cholinergic function in the brain.
The findings of 2 studies demonstrated that long-term
cholinesterase-inhibitor treatment delayed nursing home
placement over 3 years in 1 study5 but not in another,6 and
both failed to show a decline in the rate of cognitive or
functional disability over the 3-year period.5,6 Some de-
gree of neuroprotection was suggested by neuroimaging
studies that showed a slower rate of hippocampal atrophy
with donepezil versus placebo after 6 months7 or 1 year.8

These findings are of great interest and raise the possi-
bility of hippocampal atrophy as a surrogate marker of
disease progression. The other approved treatment is the
N-methyl-D-aspartate receptor antagonist memantine,
which protects against excessive activity of the excitatory
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n the year 2000, there were an estimated 4.5 million
Americans with Alzheimer’s disease, approximately
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neurotransmitter glutamate.9 The combination of me-
mantine plus donepezil in patients with moderate-to-
severe Alzheimer’s disease significantly improved mea-
sures of cognition, activities of daily living, and behavior
compared with placebo over 6 months.10 The durability of
clinical improvements associated with memantine treat-
ment is not known.

Unlike treatments that target symptoms of cognitive
dysfunction, disease-modifying therapies would slow
or arrest disease progression by interrupting underlying
pathophysiologic processes.3,4 Disease-modifying and
symptomatic treatments represent opposite ends of a con-
tinuum of possible therapeutic mechanisms. Disease-
modifying treatments would interrupt early pathologic
events (e.g., decreased neurotoxic aggregated 42-amino
acid peptide subspecies of amyloid β [Aβ42] production,
increased plaque clearance, decreased plaque formation),
thus preventing later pathologic processes. In contrast,
currently available drugs provide transient, symptomatic
relief of cognitive impairment for some patients; the natu-
ral course of the disease is either not altered or altered
very slightly.

The costs associated with Alzheimer’s disease are
enormous—$100 billion in the year 2000—and consist of
direct costs of patient care ($15 billion) and indirect costs
of lost earnings by patients and their usually unpaid care-
givers ($85 billion).11 Public health modeling has pre-
dicted that the availability of disease-modifying treat-
ments would have a significant effect on both prevalence
and overall costs. It has been estimated that the preva-
lence of Alzheimer’s disease would decline 38% by 2050
if treatments that delay the onset of Alzheimer’s disease
by 6.7 years were available by the year 2010.12 Moreover,
it is possible that disease-modifying treatments could re-
duce the annual cost of care by up to $24,000 per patient,
thereby reducing the national cost of Alzheimer’s disease
by trillions of dollars through the year 2050.13 Clearly,
treatments that target the underlying causes and alter the
natural course of Alzheimer’s disease are desperately
needed.

DATA SOURCES AND STUDY SELECTION

This review provides an update on the predominant
mechanistic theory of Alzheimer’s disease—the amyloid
hypothesis—and overviews the status of new disease-
modifying, anti-amyloid treatments in clinical develop-
ment. Several different resources were used to identify
new treatments and data from ongoing clinical trials. Web
sites from the Alzheimer Research Forum (The Drugs in
Clinical Trials section; www.alzforum.org), the National
Institutes of Health (www.clinicaltrials.gov), the Alzhei-
mer’s Association (www.alz.org), and the Alzheimer’s
Disease Education and Referral Center of the National
Institute on Aging (www.alzheimers.org) were searched

for anti-amyloid drugs currently being studied in clinical
trials. Web sites of scientific organizations and manu-
facturers of the investigational drugs in question were
scanned for additional information about ongoing and
completed studies. Subsequently, an English-language
search using PubMed (January 2003–January 2006) was
conducted using the search terms Alzheimer’s disease and
amyloid hypothesis and each of the drugs and immuno-
therapies from the 4 classes of anti-amyloid disease-
modifying therapies identified from the governmental
and professional organization Web sites. Review articles,
original research reports, and abstracts presented at
national/international meetings were chosen on the basis
of currency of publication, study methods, peer-reviewed
status, and completeness of data. Treatment of Alzheimer’s
disease is an extremely active area of clinical investigation
with many late-breaking reports. The rapidly changing na-
ture of the clinical trials database required the use of Inter-
net sources and abstracts that, for less quickly moving
fields, would not normally be considered in a literature re-
view of this sort.

AMYLOID HYPOTHESIS

The principal theory of the pathogenesis of Alzheimer’s
disease is the amyloid hypothesis, which identifies bio-
logical targets for disease-modifying treatments. Ac-
cording to the amyloid hypothesis, the increased produc-
tion or decreased clearance of a small peptide, Aβ, initiates
a pathologic process terminating in neurodegeneration, de-
mentia, and death.3,14 The hallmark pathologic lesions of
Alzheimer’s disease are extracellular cerebral plaques that
are composed of highly neurotoxic Aβ42, less neurotoxic
Aβ subspecies (i.e., Aβ38–40), and intraneuronal neurofibril-
lary tangles.14–16

The pathway for Aβ plaque formation begins with
the pathologic processing of amyloid precursor protein
(APP). Amyloid precursor protein is cleaved first by the
protease β-secretase (i.e., BACE-1) and subsequently by
γ-secretase to form either the benign peptides Aβ38–40 or the
neurotoxic peptide Aβ42. An alternate pathway in the pro-
cessing of APP involves α-secretase, which cleaves at a
site that precludes Aβ42 formation.3,14,15 Under normal cir-
cumstances, the vast majority of Aβ (> 95%) consists of
Aβ38–40; Aβ42 makes up less than 5% of total Aβ. By largely
unknown mechanisms, genetic and environmental factors
may shift this balance toward increased production of
toxic Aβ42.

Accumulation and oligomerization of Aβ42 results in
the formation of amyloid plaques and initiates a cascade of
events associated with neuronal and synaptic dysfunction,
inflammatory responses, hyperphosphorylation of struc-
tural tau proteins (resulting in neurofibrillary tangle forma-
tion), synaptic dysfunction, neuronal death, neurotransmit-
ter deficits, and ultimately clinical dementia (Figure 1).3,17
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Figure 1. The Amyloid Hypothesis of Alzheimer’s Diseasea

aReprinted with permission from Cummings.17

Abbreviations: Aβ = amyloid β, APP = amyloid precursor protein.
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Amyloid plaques are distributed in brain regions that
serve memory and cognition: the hippocampus, entorhi-
nal cortex, amygdala, and the frontal, temporal, and pari-
etal lobes.16

Some researchers argue that plaque burden does not
correlate with cognitive impairment in Alzheimer’s dis-
ease, thus fueling a debate about the validity of the amy-
loid hypothesis. However, the observation that a small
minority of patients have genetically transmitted autoso-
mal dominant forms of Alzheimer’s disease caused by
mutations in genes that express APP, presenilin-1 (PS-1),
or PS-2 strongly supports the amyloid hypothesis.17 The
majority of patients have a sporadic form of Alzheimer’s
disease, which may be associated with inheritance of the
polymorphic apolipoprotein E ε4 allele as well as other
poorly understood genetic and environmental factors. In
addition, data from both animal and clinical studies pro-
vide compelling evidence for the role of altered amyloid
processing in the pathogenesis of Alzheimer’s disease.
The amyloid hypothesis is strongly supported by data
showing that memory deficits accompany increased amy-
loid plaque burden in transgenic mice18 and also correlate
strongly with Aβ42 concentrations in the brains of patients
with Alzheimer’s disease.19 Moreover, increased brain
concentrations of small Aβ oligomers, also referred to as
Aβ-derived diffusible ligands,20 have been shown post-
mortem to correlate with memory loss in patients with
Alzheimer’s disease.21 Finally, seminal data in APP trans-
genic mice show that early administration of either an
anti-amyloid vaccine or an inhibitor of γ-secretase re-
duces amyloid plaque formation and intracellular Aβ ac-
cumulation and increases clearance of tau proteins.22

DATA EXTRACTION AND SYNTHESIS

Review articles, cited references in review articles, pri-
mary research reports, abstracts presented at scientific
meetings, and scientific, governmental, and commercial
Web sites were assessed and used in the review as deter-

mined by recent publication, adequate methodology, and
completeness of data.

Anti-Amyloid Drugs in Clinical Trials
There are 4 classes of potentially disease-modifying

treatments that have successfully advanced to later-stage
clinical trials: (1) immunotherapies, (2) secretase inhibi-
tors, (3) selective Aβ42-lowering agents (SALAs), and
(4) anti-Aβ aggregation agents (Table 1).

Immunotherapy. A number of approaches to immuno-
therapy for Aβ have been studied in animal models and
found worthy of clinical study.4 Active and passive im-
munization in Alzheimer’s disease theoretically increases
amyloid clearance via phagocytosis and/or increased
efflux of Aβ from the brain.23 Early studies in APP trans-
genic mice using active immunization with aggregated
Aβ42 (AN1792; Elan Pharmaceuticals/Wyeth Pharmaceu-
ticals) showed reduction in amyloid pathology,24 delayed
cognitive deficits, and improved behavioral performance
on memory tasks.25,26 Clinical studies of AN1792 were
conducted on the basis of these encouraging animal model
findings and the results of a phase 1 pilot study in 20 pa-
tients.27 Unfortunately, 18 of 300 phase 2 study patients
(6%) developed autoimmune meningoencephalitis, which
led to the discontinuation of the AN1792 clinical trial pro-
gram.23,28–30 One-year follow-up of patients who received
1 or more doses of AN1792 showed that patients who suc-
cessfully mounted an anti-Aβ antibody response exhibited
slower rates of cognitive and functional decline31 and
reduced cerebral spinal fluid (CSF) concentrations of tau
protein compared with nonresponders.28 Interestingly,
however, in a subset of patients who underwent baseline
and postbaseline CSF sampling, antibody response did
not correlate with reduced Aβ42 concentrations in the
CSF.28 A potentially troublesome, and as yet unexplained,
observation in antibody responders was the reduction in
whole-brain volume and increased ventricular volume.32

Taken in the aggregate, the development of immune-
based therapy for Alzheimer’s disease remains a viable

Table 1. Disease-Modifying Therapies for Alzheimer’s Disease Currently in Clinical Development
Current Stage of

Drug Class Drug Name Clinical Development Manufacturer

Anti-amyloid immunotherapy
Active immunization ACC-001 Phase 1 Elan/Wyeth
Passive immunization AAB-001 Phase 2 Elan/Wyeth

Intravenous immunoglobulin Phase 1 Various
Secretase inhibitors
γ-Secretase inhibitors LY450139 Phase 2 Eli Lilly

Selective Aβ42-lowering agents Tarenflurbil; MPC-7869 Phase 3 Myriad Genetics Inc
Inhibitors of Aβ aggregation NC-531 Phase 3 Neurochem Inc

O-LN Phase 2 ReGen Therapeutics
Miscellaneous Nitroflurbiprofen; HCT-1026 Phase 2 NiCox

Atorvastatin Phase 2 Pfizer
Leuprolide acetate; VP4896 Phase 3 Voyager Pharmaceutical

Abbreviations: Aβ = amyloid β, Aβ42 = aggregated 42-amino acid peptide subspecies of amyloid β.
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avenue of clinical research despite the cancellation of
AN1792 trials. The primary focus of new vaccine de-
velopment programs is the design of immunotherapies
that are effective without the serious adverse events as-
sociated with AN1792. Active immunization with the
immunoconjugate ACC-001 (Elan Pharmaceuticals/
Wyeth Pharmaceuticals) is being evaluated for its ability
to induce a highly specific antibody response to Aβ in
a single-dose, placebo-controlled, 12-month, phase 1
study of 70 patients with mild-to-moderate Alzheimer’s
disease.33 Passive immunotherapy with the humanized
monoclonal antibody, AAB-001 (Elan Pharmaceuticals/
Wyeth Pharmaceuticals), is in phase 2 evaluation in 200
patients with mild-to-moderate Alzheimer’s disease. This
placebo-controlled, 18-month, multiple-dose study is de-
signed to assess safety, tolerability, and clinical endpoints.
A corresponding neuroimaging trial also is underway to
measure changes in amyloid plaque burden.34 The poten-
tial efficacy of another form of passive immunization has
recently been demonstrated in a 6-month study in 8 pa-
tients with mild Alzheimer’s disease. Administration of
intravenous immunoglobulin resulted in transient eleva-
tions in plasma Aβ levels and reduced CSF Aβ concentra-
tions, suggesting that nonspecific anti-amyloid antibodies
may warrant further study.35

Secretase inhibitors. Inhibitors of γ-secretase and
β-secretase (i.e., BACE) are potential disease-modifying
treatments for Alzheimer’s disease. In theory, they would
block formation of Aβ42 and its subsequent neuropathol-
ogy. However, mechanistic and pharmacokinetic prob-
lems have hindered progress in drug development for this
class of compounds.4

γ-Secretase inhibitors. A number of compounds that in-
hibit γ-secretase activity in the brain have been identified.
However, γ-secretase has many biologically essential sub-
strates.36 One physiologically important γ-secretase sub-
strate is the Notch signaling protein, which is an interme-
diate in the differentiation and proliferation of embryonic
cells, T cells, gastrointestinal goblet cells, and splenic B
cells. Experience with transgenic mice has shown that ad-
ministration of a γ-secretase inhibitor in doses sufficient
to reduce Aβ concentrations interferes with lymphocyte
differentiation and alters the structure of intestinal goblet
cells.37 In addition, hippocampal neuroplasticity,38 neuro-
degeneration, and impaired memory39 are evident in adult
mice bred to be deficient for the Notch protein. Safety is
therefore an important consideration for compounds that
nonselectively inhibit γ-secretase.

A nonselective γ-secretase inhibitor, LY450139 (Eli
Lilly), has been evaluated in a phase 1 placebo-controlled
study in 37 healthy adults (dose range, 5 mg–50 mg).40

Amyloid β concentrations in the CSF were reduced in
both active treatment and placebo groups, but between-
group differences were not statistically significant. Tran-
sient gastrointestinal adverse effects (bleeding, abdominal

pain) were reported by 2 patients in the 50-mg group.40

Preliminary findings of a 6-week phase 2 study of 70
patients with mild-to-moderate Alzheimer’s disease who
were stabilized on cholinesterase inhibitors have been re-
ported.41 Reductions in CSF Aβ concentrations were ob-
served in both the active and placebo groups, with no sta-
tistically significant differences between groups. Changes
in cognitive function were similar for both the LY450139
and placebo groups, but the study was not designed to
detect these differences. No serious adverse events were
reported.41

However, to date, compounds that specifically target
the γ-secretase isoform involved in APP processing have
not reached clinical study.3,4,42 Progress is being made
in identifying potential targets43 and highly specific
γ-secretase inhibitors44 that may someday translate into
the development of efficacious and safe treatments.
β-Secretase inhibitors. β-secretase also is an important

biological target for new drug development, but clinical
trials have not yet been conducted.45 While inhibition of
β-secretase is not expected to incur the same safety risk as
γ-secretase inhibitors,46 BACE-1 deficiency in genetically
engineered mice is associated with impaired learning.47 In
addition, there are significant pharmacokinetic challenges
in developing a viable BACE inhibitor. To date, the com-
pounds that effectively inhibit BACE activity are large
molecules that do not penetrate the blood-brain barrier.4,48

SALAs. Tarenflurbil. Tarenflurbil is the first agent in
a new class of drugs that modulate γ-secretase activity—
the SALAs. An important advantage for the SALA class
of drugs is lack of interference with Notch or other
γ-secretase substrates.49 Tarenflurbil binds to a γ-secretase
site other than the active/catalytic center of relevance to
production of Aβ42, thereby altering the conformation of
γ-secretase and shifting production away from Aβ42, while
avoiding interference with other physiologically essential
γ-secretase substrates.

Tarenflurbil (MPC-7869; Myriad Pharmaceuticals),
which is the pure, R-enantiomer of flurbiprofen,
shifts cleavage of APP away from Aβ42, thereby pro-
ducing shorter, nontoxic fragments (e.g., Aβ38).

50,51 In
contrast with S-flurbiprofen or other nonsteroidal anti-
inflammatory drugs (NSAIDs), tarenflurbil does not
inhibit cyclo-oxygenase (COX) I or COX II and is not
associated with gastrointestinal toxicity.52 Administration
of tarenflurbil to transgenic mice reduces amyloid
plaque burden and prevents learning and behavioral
deterioration.53

The findings of a 3-week, placebo-controlled, phase 1
pharmacokinetic study of tarenflurbil (twice-daily doses
of 200 mg, 400 mg, or 800 mg) in 36 healthy, older volun-
teers showed that tarenflurbil was as well tolerated as pla-
cebo, with no evidence of gastrointestinal or renal toxic-
ity.54 A phase 2 study was conducted in 207 patients with
mild-to-moderate Alzheimer’s disease who were ran-
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domly assigned to receive twice-daily doses of taren-
flurbil 400 mg, tarenflurbil 800 mg, or placebo for 12
months. In mild Alzheimer’s disease patients (Mini-
Mental State Examination [MMSE] score = 20–26) ran-
domly assigned to the 800-mg twice-daily group, statisti-
cally significant benefit was observed at 12 months in
activities of daily living (p = .033) as measured by the
Alzheimer’s Disease Cooperative Study-Activities of
Daily Living Scale (ADCS-ADL) and global function
(p = .042) as measured by the Clinical Dementia Rating-
sum of the boxes (CDR-sb), with a positive trend ob-
served in cognition (Alzheimer’s Disease Assessment
Scale-cognitive subscale; ADAS-cog). In addition, there
was a significant plasma concentration–to-response rela-
tionship. For patients with mild Alzheimer’s disease who
achieved tarenflurbil plasma concentrations higher than
75 µg/mL (i.e., generally patients in the 800-mg twice-
daily group), the rate of deterioration in activities of daily
living (ADCS-ADL) and global function (CDR-sb) was
reduced by 62% (p = .025) and 51% (p = .035), respec-
tively. In this study, no benefit was observed in moderate
Alzheimer’s disease patients (MMSE score < 20).

Overall, tarenflurbil appeared very well tolerated. Dis-
continuations due to adverse events were comparable be-
tween the 800-mg twice-daily and placebo groups. Ad-
verse events observed at a higher frequency in the treated
groups compared with placebo included transient eosino-
philia, mild anemia, blood pressure elevation, lower res-
piratory infection, and rash. Adverse events observed at a
lower frequency than placebo included urinary inconti-
nence and psychiatric events. At the 6-month point in an
ongoing 12-month follow-on, patients originally treated
with tarenflurbil 800-mg twice daily achieved a 33% im-
provement in cognition on the ADAS-cog, a slowing in
the rate of decline in global functioning on the CDR-sb,
and maintenance of activities of daily living scores on
the ADCS-ADL as compared with their status at the end
of the placebo-controlled phase of the study.55 A phase 3
study designed to assess the efficacy of tarenflurbil
800 mg twice daily in patients with mild Alzheimer’s
disease is ongoing.55

Anti-aggregation agents. Several anti-Aβ aggregation
agents are currently in clinical testing. Their mechanisms
of action vary and are not completely understood, but are
believed to involve prevention of fibril formation and fa-
cilitation of soluble Aβ clearance.

Tramiprosate. Tramiprosate (Neurochem, Inc.) is a
small-molecule glycosaminoglycan (GAG) mimetic.
Glycosaminoglycan binds to soluble Aβ, facilitating
fibril formation and deposition of amyloid plaque.
GAG mimetics compete for GAG-binding sites, thereby
blocking fibril formation56 and reducing soluble Aβ.57,58

Tramiprosate reduces plaque burden and decreases CSF
concentrations of Aβ in transgenic mice.58 However,
changes in cognitive and behavioral outcomes in this

animal model have not been reported. No serious adverse
events were reported in a single-dose phase 1 pharmaco-
kinetic evaluation in healthy adults, and investigators
concluded that tramiprosate was well tolerated.57 A
3-month phase 2 study was subsequently conducted in 58
patients with mild-to-moderate Alzheimer’s disease who
were randomly assigned to tramiprosate 50 mg, 100 mg,
or 150 mg twice daily or placebo. Patients who completed
the study were eligible to receive 150 mg twice daily
during a 21-month open-label extension. Baseline CSF
Aβ42 concentrations declined by up to 70% after 3 months
for patients randomly assigned to the 100-mg or 150-mg
twice-daily groups, but there were no differences in cog-
nitive function between the tramiprosate and placebo
groups. Open-label treatment with tramiprosate for 1 year
resulted in a slightly slower rate of decline on the ADAS
and the MMSE scores59 than would be expected in histori-
cal controls. Phase 3 studies of tramiprosate are ongoing.

Colostrinin. Colostrinin is a proline-rich polypeptide
complex derived from sheep colostrum (O-CLN; ReGen
Therapeutics). Colostrinin inhibits Aβ aggregation and
neurotoxicity in cellular assays60 and improves cognitive
performance in laboratory animals.61 Colostrinin was
reported to be well tolerated in a 3-week phase 1 study
of patients with Alzheimer’s disease who received doses
of up to 200 µg daily or 100 µg every other day.61 The
findings of phase 2 studies show modest improvements in
MMSE scores for patients with mild Alzheimer’s disease
over a treatment period of 12 to 16 months, but this level
of response was not sustained during 18 to 28 months of
continued treatment. Improvements in MMSE scores
were greater for patients with mild versus moderate Alz-
heimer’s disease.61–63

Clioquinol. Clioquinol (PBT-1; Prana Biotechnology)
is a quinolone with antibacterial and antifungal properties
that was withdrawn from the market decades ago because
of subacute myelo-optic neuropathy. Its mechanism rela-
tive to Alzheimer’s disease is theorized to involve chela-
tion of copper, a metal believed to facilitate plaque for-
mation. Early clinical studies showed a reduction in the
rate of cognitive decline,64 but clinical trials were halted
because of toxic impurities inherent in the formulation.
Second-generation metal chelators are reported to be en-
tering clinical trial development.

Other potential disease-modifying treatments in
clinical trials. The NSAIDs, statins, and a gonadotropin-
releasing hormone agonist are being investigated for pos-
sible disease-modifying effects in patients with mild-to-
moderate Alzheimer’s disease. Clinical development of
phenserine, a “dual action” drug that inhibits cholines-
terase and APP production,65 was recently suspended fol-
lowing negative phase 3 study results.66

NSAIDs. A large body of epidemiologic evidence
suggests that long-term use of some NSAIDs protects
against the development of Alzheimer’s disease.67–69
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However, prospective studies of rofecoxib, naproxen,
or diclofenac failed to slow progression of cognitive
decline in patients with mild-to-moderate Alzheimer’s
disease.70–72 In contrast, indomethacin may delay cogni-
tive decline in this subset of patients, but gastrointestinal
toxicity is treatment-limiting.73,74 Because of general con-
cerns about lack of efficacy, gastrointestinal toxicity, and,
most recently, myocardial infarction and stroke, the
NSAIDs are not considered to be viable treatment options
for patients with Alzheimer’s disease.75 Indeed, a large
primary prevention trial of naproxen, celecoxib, and pla-
cebo was recently halted because of concerns about car-
diac and cerebrovascular events.76

Nitroflurbiprofen (HCT-1026; NicOx) is a nitric oxide-
donating derivative of the NSAID flurbiprofen that im-
proved cognitive function in rats following chronic li-
popolysaccharide infusions77 and reduced plaque burden
in mice.78 In human studies, nitroflurbiprofen penetrated
the blood-brain barrier79 and reduced the rate of gastro-
intestinal ulcers by 60% to 80% compared with flur-
biprofen.80 Nitroflurbiprofen is currently being evaluated
in a phase 2 study in patients with Alzheimer’s
disease.81

Statins. Some epidemiologic studies have suggested
that elderly patients treated with long-term statin therapy
have lower rates of incident Alzheimer’s disease.82 The
mechanism whereby the statins exert this putative pro-
tective effect is not completely understood, but may be
related to reduced serum cholesterol levels and/or anti-
inflammatory properties.83 However, the statins (i.e., the
HMG-CoA reductase inhibitors) enhance the activity of
α-secretase, which cleaves APP into soluble products
and precludes the production of Aβ42. The statins are be-
lieved to promote α-secretase activity by inhibiting Rho-
associated protein kinase 1 (i.e., ROCK1), an enzyme that
modulates (i.e., blocks) α-secretase activity.84 Clinical
studies of atorvastatin and simvastatin therapy in patients
with Alzheimer’s disease are ongoing. Results from a
phase 2 trial of atorvastatin have been published.83 In this
study, 63 evaluable patients with mild-to-moderate Alz-
heimer’s disease were randomized to placebo or 80 mg
atorvastatin daily and followed for 1 year. Atorvastatin
treatment was associated with a slower rate of decline on
the ADAS-cog and MMSE at 1 year compared with pa-
tients in the placebo group. The authors concluded that
statin therapy may slow the progression of cognitive im-
pairment in patients with mild-to-moderate Alzheimer’s
disease.83

Gonadotropin-releasing hormone agonist. Leuprolide
acetate (VP4896; Voyager Pharmaceutical) is a
gonadotropin-releasing hormone agonist that is entering
phase 3 testing in patients with mild-to-moderate Alzhei-
mer’s disease.85 The theory underlying the clinical trial
program of leuprolide (i.e., age-related increases in lu-
teinizing hormone cause Alzheimer’s disease) is not con-

sistent with the amyloid hypothesis. However, 1 report
describes reductions in Aβ40 and Aβ42 levels in brain tis-
sue from standard adult control mice.86 Mice bred to over-
produce amyloid (i.e., APP transgenic mice) were not
used in this study, and cognitive and behavioral effects
were not assessed. The possible role of this agent in the
clinical setting cannot be predicted at this time.

CONCLUSIONS: THE FUTURE OF
ALZHEIMER’S TREATMENT

The burgeoning growth of the elderly population and
with it the projected epidemic of Alzheimer’s disease un-
derscores the urgent need for treatments that safely and
effectively slow or arrest cognitive and functional deterio-
ration. Currently available drugs offer symptomatic relief
that is temporary at best. New and more durable disease-
modifying treatments are needed. The widespread accep-
tance of the amyloid hypothesis has spurred intense re-
search efforts to identify disease-modifying treatments
that interrupt the natural course of Alzheimer’s disease
by blocking the pathologic processing of APP to Aβ42 or
enhancing its clearance or decreasing its toxicity. Molecu-
lar milestones along the amyloid pathway, including APP,
the enzymes involved in generating Aβ42 (i.e., γ-secretase,
β-secretase) or less toxic derivatives (i.e., α-secretase),
and Aβ42 itself, are promising targets for therapeutic
intervention.

There has been much progress to date. Although initial
setbacks associated with unanticipated aseptic meningo-
encephalitis have slowed development of immunothera-
peutic approaches, active or passive immunization against
Aβ42 remains an area of active investigation. Researchers
continue to explore the therapeutic potential of γ- or
β-secretase inhibitors, but untoward events associated
with the nonselective inhibition of biologically essential
γ-secretase substrates (e.g., Notch) pose a significant
challenge. In contrast, drugs that selectively target Aβ42

production (e.g., tarenflurbil) or block Aβ aggregation
(e.g., tramiprosate) have advanced the farthest in the drug
development pipeline and, to date, offer the greatest hope
for clinical availability of disease-modifying therapy in
the near future.

Safety is as important as efficacy, particularly in the
elderly population, which is especially susceptible to ad-
verse drug events. Alzheimer’s disease treatments that tar-
get specific elements of the amyloid cascade and do not
interfere with other essential biological pathways are ex-
pected to be better tolerated. The long-term efficacy and
safety of the disease-modifying drugs currently being
studied await the results of ongoing clinical trials.

Continued clinical trials are necessary to better char-
acterize candidate populations and optimal doses for the
disease-modifying drugs in development. The possibility
that mild cognitive impairment is a precursor to Alzhei-
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mer’s disease and a possible starting point for disease-
modifying treatment is the subject of a broad research ef-
fort. The relative efficacy and safety of different classes of
disease-modifying drugs are not yet known. Only exten-
sive clinical experience and the findings of direct, head-
to-head trials will inform treatment decisions about the
relative strengths and weaknesses of different classes of
drugs. Looking ahead, it is likely that the treatment reg-
imens of tomorrow will begin with mild cognitive impair-
ment and eventually extend to primary prevention in
high-risk populations (Table 2). Combination therapy
with the currently available symptomatic treatments may
prove beneficial for patients whose symptoms have al-
ready begun. No drugs in current development offer the
hope of complete symptom reversal and “cure.”

Prospects for the future of Alzheimer’s disease treat-
ment are very encouraging. The diversity of different
therapeutic strategies being explored in clinical trials
offers hope that some day in the not too distant future,
disease-modifying treatments will become the standard
of care and serve as the springboard for permanently
changing the course of Alzheimer’s disease.

Drug names: atorvastatin (Lipitor), celecoxib (Celebrex), diclofenac
(Cataflam, Voltaren, and others), donepezil (Aricept), flurbiprofen
(Ansaid and others), galantamine (Razadyne), indomethacin (Indocin
and others), memantine (Namenda), naproxen (Naprosyn and others),
rivastigmine (Exelon), simvastatin (Zocor and others).
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