Diagnosis and Treatment of Premenstrual Dysphoria

Elias Eriksson, Ph.D.; Björn Andersch, M.D., Ph.D.; Hoi Por Ho, B.Sc.; Mikael Landén, M.D., Ph.D.; and Charlotta Sundblad, M.D., Ph.D.

Premenstrual dysphoria (PMD) is a severe form of premenstrual syndrome afflicting 5% to 10% of all fertile women. Cardinal symptoms—appearing regularly between ovulation and menstruation and disappearing within a few days after the onset of the bleeding—are depressed mood, tension, affect lability, and irritability. Of these symptoms, irritability is often the most prominent. Serotonin reuptake inhibitors (SRIs), but not nonserotonergic antidepressants, reduce the symptoms of PMD effectively. The onset of action of SRIs is much shorter when used for PMD than when used for depression, enabling women with PMD to restrict medication use to the luteal phase of the cycle (so-called intermittent treatment). The findings that SRIs are effective for PMD—and that sexual dysfunction is the most frequent side effect during long-term treatment—both lend support for the hypothesis that a major role for brain serotonin is to modulate sex steroid–driven behavior.

Many women of fertile age experience changes in mood and behavior that appear around ovulation, or during the 2 weeks prior to menstruation, and disappear completely within a few days after the onset of bleeding. Irritability is often the most prominent symptom, but depressed mood and affect lability are common complaints as well. Many women also experience somatic symptoms in the premenstrual phase, such as breast tenderness, a sense of bloating, and headache, but these are usually of less clinical significance than the mental complaints. It is the influence of the menstrual cycle on mood and behavior that is the subject of this review.

Regardless of type and severity of symptoms, a condition that occurs regularly during the luteal phase of the cycle and disappears during the follicular phase is often referred to as premenstrual syndrome (PMS). This term, however, is inadequate as a medical diagnosis and indication for drug treatment, since it is poorly defined and commonly used to describe mild, clinically insignificant premenstrual symptoms that are present in a majority of women of fertile age. Moreover, most definitions of PMS are based on the assumption that the various mental and somatic symptoms women experience in the premenstrual phase are different aspects of one condition. This notion may, however, be questioned; the interrelationship between symptoms such as irritability, headache, and breast tenderness is not obvious, since these symptoms clearly are manifestations of at least partly different biological mechanisms, and since they respond differently to different forms of treatment (for references, see Eriksson et al.6).

The term premenstrual dysphoric disorder (PMDD) was first introduced in DSM-IV9 and was recently approved by American and English authorities as an indication for pharmacologic treatment. The most important difference between PMS and PMDD is that the latter diagnosis implies that the patient suffers from mental symptoms, not only somatic complaints, and that the condition is severe enough to interfere significantly with work/school, usual social activities, or relationships with others.

Some aspects of the definition of PMDD in the DSM-IV are controversial. For example, the diagnostic relevance of all 11 symptoms listed in the manual is questionable, and the lack of emphasis on irritability as a cardinal symptom is unfortunate. In addition, whereas some researchers would argue that the DSM-IV definition of PMDD underestimates the clinical significance of somatic...
symptoms, others would omit them completely as defining symptoms of a psychiatric condition. The requirement that one should experience at least 5 of the listed symptoms in order to fulfill the criteria for a diagnosis of PMDD is also debatable; some patients are severely distressed by a single symptom, such as irritability. Finally, according to DSM-IV, a definite diagnosis of PMDD cannot be made unless the cyclical nature of the symptomatology has been confirmed by prospective daily symptom ratings for at least 2 consecutive cycles. While this criterion should be applied in PMDD drug trials, it is unlikely that it will be adopted as standard clinical practice.

Although aspects of the DSM-IV definition of PMDD hence could be questioned, the intention to demarcate, define, and recognize a serious variant of PMS characterized by mental rather than by somatic symptoms is commendable and has inspired and facilitated research in this field. The term premenstrual dysphoria (PMD) is often used to describe a condition characterized by symptoms such as irritability and depressed mood and corresponding to PMDD in terms of severity, but not necessarily fulfilling exactly the criteria of PMDD that are listed in DSM-IV. In this review, the term premenstrual dysphoria and the abbreviation “PMD” (rather than “PMDD”) will be used, with this meaning, regardless of whether the study cited used PMDD criteria or not.

A common misconception is that PMS/PMD is a modern invention and a typical manifestation of life in contemporary Western societies. This notion is challenged by the fact that premenstrual complaints were described by Hippocrates (600 B.C.), Trotula from Salerno (11th century), and a large number of authors during the Renaissance. In addition, several epidemiologic studies have demonstrated that premenstrual complaints are common in non-Western societies. A large number of studies have explored the prevalence of premenstrual complaints in Europe and in the United States, with fairly congruent results. These investigations found that a majority of fertile women experience mild premenstrual symptoms, whereas 5% to 10% are affected by a serious variant corresponding to PMD/PMDD. Recent epidemiologic studies have supported the assumption that irritability is the single most disturbing symptom.

An influence of the premenstrual phase on mood should not be regarded as pathologic per se, since estrus cycle–related irritability may also be observed in nonhuman species (in the sexually nonreceptive phase) (see below) and mild cycle-related complaints are present in a majority of women of fertile age. How severe premenstrual complaints should be in order to be regarded as the manifestation of a disorder, and candidates for treatment, could be a matter of debate. The fact that the percentage of women of fertile age reporting that they suffer from a severe variant of this condition is relatively constant in many different epidemiologic studies, however, suggests that the difference between nonsignificant premenstrual complaints and PMD is fairly obvious to the afflicted patient. It should be noted that there are many other psychiatric disorders—social phobia, generalized anxiety disorder, dysthymia, eating disorders, attention deficit disorder—for which the borderline between what may be regarded as “normal” complaints and a psychiatric diagnosis is not razor-sharp; still, it is important that those with serious symptoms are offered a diagnosis and treatment. As with these debilitating disorders, it is important that patients with serious premenstrual psychiatric symptoms be diagnosed and treated.

The high prevalence of mild premenstrual complaints among the general female population has led to a trivialization of the serious form of this condition. Therefore, it is important to emphasize that PMD undermines quality of life, has significant social consequences, may be associated with an increased risk of suicide, and may be associated with a predisposition to major depressive disorder.

There also may be a relationship between PMD and somatic illness. In line with this notion, we recently found that women with PMD have a higher waist-hip ratio (M.L.; E.E.; F. Baghei, M.D., et al., unpublished data, January 2001)—an index of abdominal obesity—and lower heart-rate variability (M.L.; E.E.; B. Wennerblom, M.D., Ph.D., et al., unpublished data, January 2001) than symptom-free controls. As far as we know, no studies investigating the possible relationship between PMD and cardiovascular disease have been undertaken; however, since both high waist-hip ratio and low heart-rate variability appear to be important risk factors in this context, such a study is warranted. Notably, 2 other serotonin-related psychiatric disorders, depression and panic disorder, are associated with a significantly increased risk for cardiovascular disease.

Several studies have revealed that PMD is hereditary to a great extent, but nothing is known regarding the specific genes involved. Obviously, candidate genes are those that code for proteins important in the formation and effects of sex steroids, as well as proteins involved in brain serotonergic neurotransmission.

THE IMPORTANCE OF SEX STEROIDS IN PMD

Since symptoms of PMD appear only during a specific phase of the menstrual cycle, it is tempting to suggest that they are associated with fluctuations in the secretion of ovarian sex steroids. This idea is supported by the fact that symptoms are absent during anovulatory cycles and that they can be effectively relieved by means of ovariectomy or by treatment with an ovulation-inhibiting gonadotropin-releasing hormone analogue.

A large number of studies have addressed whether serum estrogen and progesterone levels throughout the
menstrual cycle differ between women with PMD and women without premenstrual complaints. Although the results of these investigations have not been unanimous, a general impression from the literature is that no such differences exist.

The degree to which a woman experiences premenstrual complaints is hence probably not dependent on the amount of estrogen and progesterone produced by the ovaries, but rather on how sensitive the brain is to the influence of these hormones. This hypothesis is supported by the observation that treatment with estrogen- and gestagen-containing oral contraceptives, which leads to a replacement of the endogenous sex steroids by exogenous hormones, usually does not lead to a reduction in symptoms. Of importance in this context is also a recent study showing that administration of female sex steroids may cause a relapse in symptomatology in women with PMD who have become symptom-free by means of treatment with an ovulation inhibitor; in women with no history of premenstrual complaints, the same treatment regimen did not provoke PMD-like symptoms. The idea that some women are more sensitive to the dysphoria-inducing effects of sex steroids than others also gains support from studies showing that menopausal women medicating with sequential hormonal replacement therapy often experience PMD-like symptoms during the days they are taking the gestagen, and that women with a history of PMD are particularly susceptible to this side effect.

It has previously been suggested that premenstrual complaints are triggered by a decline in progesterone levels during the late luteal phase; PMD thus has been regarded as a manifestation of progesterone withdrawal. Studies of gestagen-induced dysphoria, however, suggest that the symptoms are triggered by high levels of progesterone around ovulation (sometimes with a delay of a few days), rather than by the declining levels premenstrually. In support of this theory, administration of gestagens (or estrogen) during the later part of the luteal phase does not reduce symptoms of PMD.

It is well established that androgens may provoke irritability, the cardinal symptom of PMD. We have suggested that a modest hyperandrogenicity may increase one’s predisposition to PMD. This theory is supported by 2 studies reporting slightly elevated serum levels of testosterone in women with PMD as compared with controls, but there are other investigations that have not replicated this finding (for references, see Eriksson et al.). The notion that androgens may be involved in the pathophysiology of PMD is, however, supported by the preliminary observation that treatment with an androgen antagonist seems to reduce symptoms. The observation that women with PMD often display an abdominal distribution of fat tissue (see above) also agrees with the hypothesis that PMD is associated with testosterone, since waist-hip ratio is strongly correlated with the degree of androgenicity.

BRAIN NEUROTRANSMISSION IN PMD

During the past decade, many papers have suggested that the neurotransmitter serotonin may be involved in the pathophysiology of PMD. Although there are as yet no robust findings suggesting that patients with PMD differ from controls with respect to brain serotonergic activity, the indirect evidence supporting an involvement of serotonin is compelling.

First, animal experiments have established that brain serotonergic neurons predominantly modulate aspects of behavior that are also regulated by sex steroids, such as aggression/irritability and sexual behavior. It hence appears as if one of the most important physiologic roles of serotonin is to modulate sex steroid–driven behavior, of which PMD may be regarded as a typical example. Of special importance in this context is the fact that serotonin, as judged by animal experiments, may counteract the cardinal symptom of PMD, irritability. In addition, other symptoms often reported by women with PMD, including depressed mood and carbohydrate craving, also have long been assumed to be under serotonergic control.

Second, it is well known that estrogen, progesterone, and testosterone influence brain serotonergic activity. However, it should be emphasized that the influence of sex steroids on brain neurotransmission is not restricted to the serotonergic neurons; many other transmitters are also reported to be modulated by male and female sex hormones.

Third, women with PMD differ from controls with respect to a number of biological markers believed to indirectly reflect brain serotonergic transmission, including platelet monoamine oxidase activity, density of serotonin transporters in platelets, the ratio between the dopamine metabolite homovanillic acid and the serotonin metabolite 5-hydroxyindoleacetic acid in the cerebrospinal fluid, and serotonin-mediated release of prolactin. Although it is difficult to interpret the results of these kinds of studies, the large number of reports hinting at a relationship between PMD and putatively serotonin-related parameters suggest that these findings may not be merely accidental.

The fourth and most persuasive argument for the putative involvement of serotonergic neurons in the pathophysiology of PMD is the observation that pharmacologic agents facilitating brain serotonergic neurotransmission effectively relieve PMD symptoms in most patients. As is discussed below, the serotonin reuptake inhibitors (SRIs), which inhibit the transport protein that removes serotonin from the synaptic cleft, are the most extensively studied (and probably the most effective) compounds in this respect. However, the serotonin-releasing compounds fenfluramine and m-chlorophenylpiperazine (m-CPP), the serotonin precursor tryptophan, and a serotonin receptor (5-HT1A) agonist, buspirone, have also been shown to be superior to placebo in reducing the symptoms of PMD (Table 1). Conversely, inhibition of serotonergic activity,
achieved by administering a tryptophan-free diet, aggravates irritability in women with PMD.41 Pyridoxine (vitamin B\textsubscript{6}) has been attributed some symptom-reducing effect in PMD (for references, see Eriksson et al.3); tentatively, this effect could be due to the fact that this vitamin is a co-factor for tryptophan hydroxylase, an enzyme of importance for the synthesis of serotonin.28

Although the evidence that serotonin plays an important role in the pathophysiology of PMD is strong, the involvement of other neurotransmitters should not be ignored. According to a recent hypothesis, premenstrual complaints are associated with the well-established effects of allopregnanolone, a progesterone derivative, on receptors for \(\gamma\)-aminobutyric acid (GABA) of the GABA-A subtype.42–47 Recent studies48,49 suggesting that women with PMD differ from symptom-free women with respect to GABA-A receptor responsiveness support this theory. However, the extent to which this hypothesis will lead to new, effective treatment strategies for PMD is uncertain. The most well-established pharmacologic way to facilitate GABA-A activity—administration of benzodiazepines—is apparently only modestly effective in PMD4 and should usually be avoided, given the risk for drug dependence.

It has recently been suggested that the effect of SRIs in PMD may be due to a direct interaction between these compounds and an enzyme involved in the formation of allopregnanolone.50 According to this theory, the effect of SRIs on PMD would hence be completely independent of serotonin. Given the fact that premenstrual symptoms can be influenced not only by SRIs, but also by a variety of other compounds modulating brain serotonergic neurotransmission in different ways, this theory, however, seems somewhat farfetched.

TREATMENT WITH SRIS

In a small open trial published in 1990,51 clomipramine, a strong yet nonselective SRI, dramatically reduced premenstrual irritability and depressed mood. The efficacy of clomipramine in PMD has been subsequently confirmed in 2 placebo-controlled studies; moreover, 4 of the more selective SRIs—citalopram, fluoxetine, paroxetine, and sertraline—have been shown to be superior to placebo for this indication (for references, see Eriksson35). There are by now approximately 20 placebo-controlled trials supporting the efficacy of SRIs in PMD, and at least 2 of these comprised very large patient populations (1 with fluoxetine,52 1 with sertraline53). In a recent meta-analysis, it was concluded that SRIs are indeed an effective treatment for PMD and should be regarded as first-line treatments54 (see also comments in Steiner55). Fluoxetine is the SRI with the most extensive documentation and is now officially approved for PMDD in several countries (including the United States and the United Kingdom).

In all other established indications for SRIs, such as depression, panic disorder, and obsessive-compulsive disorder, there is a latency period of 2 to 3 weeks between onset of medication and substantial improvement in symptoms.56 We were therefore surprised to find that the symptom-reducing effect of clomipramine on PMD was apparent within 1 to 2 days after onset of treatment.56 This short onset of SRI action in PMD is of clinical significance, since it enables women with PMD to restrict drug intake to the luteal phase of the cycle (intermittent treatment). It is also of pharmacologic importance since it demonstrates that SRIs do not always display a slow onset of action. The lag phase associated with SRI use in other indications has been taken as support for the hypothesis that class of drugs does not elicit acute elevation of transmitter levels in serotonergic synapses in brain, possibly due to receptor-mediated feedback mechanisms. The discovery that the beneficial effect of SRIs in PMD is characterized by a short onset of action, however, challenges this theory, as does the fact that certain serotonin-related side effects of SRIs (nausea, sexual dysfunction) are also evident shortly after the start of medication. The observation that the forceful serotonin releaser fenfluramine exerts a prompt symptom reduction in PMD,36 but not in depression, also supports the notion that the lag phase of SRIs in the treatment of depression is not due to

Table 1. Effects of Manipulation of Brain Serotonergic Activity on the Symptoms of Premenstrual Dysphoriaa

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Effect on Serotonergic Neurotransmission</th>
<th>Effect in PMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serotonin reuptake inhibitors</td>
<td>Blockade of the reuptake inhibition = facilitated transmission</td>
<td>Marked symptom relief</td>
</tr>
<tr>
<td>Citalopram</td>
<td>Enhanced release = facilitated transmission</td>
<td>Symptom relief</td>
</tr>
<tr>
<td>Clomipramine</td>
<td>Activation of 5-HT\textsubscript{1A} receptors = facilitated 5-HT\textsubscript{1A}-mediated transmission</td>
<td>Symptom relief</td>
</tr>
<tr>
<td>Fluoxetine</td>
<td>Enhanced synthesis = facilitated transmission</td>
<td>Symptom relief</td>
</tr>
<tr>
<td>Paroxetine</td>
<td>Reduced synthesis = impaired transmission</td>
<td>Aggravated symptomatology</td>
</tr>
<tr>
<td>Serotonin releasing compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenfluramine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n-Chlorophenylpiperazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buspirone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tryptophan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin B\textsubscript{6} (pyridoxine)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tryptophan-free diet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aBased on references 36–41.
Eriksson et al.

an inability of these drugs to elicit an acute increase in the synaptic levels of serotonin, but to other factors.

A large number of controlled trials have now confirmed that the SRIs may be administered intermittently, during luteal phases only, for the treatment of PMS. In a recent placebo-controlled trial with the SRI citalopram, we found that intermittent treatment is in fact more effective than continuous treatment (Figure 1). This unexpected finding was subsequently confirmed in a trial using sertraline. The most likely explanation for these observations is that continuous administration of some of the SRIs in PMD is associated with a certain development of tolerance, which may be avoided by intermittent drug administration.

In the treatment of depression, drugs facilitating noradrenergic neurotransmission seem neither less nor more effective than those that preferentially or selectively influence serotonin. The same does not hold true in the treatment of PMD. We hence have shown that maprotiline, a selective norepinephrine reuptake inhibitor, is clearly less effective than the SRI paroxetine in reducing premenstrual irritability (as well as other symptoms) (Figure 2). The superiority of serotonergic antidepressants over antidepressants acting via other neurotransmitters for the treatment of PMD has subsequently been confirmed in 2 controlled studies. Notably, serotonergic antidepressants previously have been shown to be superior to noradrenergic drugs in the treatment of obsessive-compulsive disorder and panic disorder.

In summary, premenstrual irritability and depressed mood can be very effectively treated with the SRIs, including citalopram, clomipramine, fluoxetine, paroxetine, and sertraline. The response rate among patients taking these drugs for PMD is high (60%–100%), and many become symptom-free. Somatic complaints such as breast tenderness and sense of bloating also improve with SRI treatment. Whether this reduction in self-rated somatic symptoms is secondary to an improvement in mood or due to a primary effect on somatic symptoms remains to be explored. The doses of SRIs used to treat PMD should be the same as those used for depression, or lower; with respect to clomipramine, the dose for PMD can be much lower (150 mg/day for depression vs. 10–50 mg/day for PMD). The treatment should usually be given intermittently rather than continuously; patients experiencing initial side effects each time they start medication, however, may find continuous medication preferable. Withdrawal symptoms are usually not a problem during intermittent treatment with an SRI for PMD, probably due to the fact that treatment periods are no longer than 2 weeks. The most common side effect during long-term treatment is sexual dysfunction (anorgasmia, reduced libido), but with intermittent drug use, side effects are restricted to 2 weeks of the cycle, usually making them bearable.

The alternative pharmacologic strategies suggested for PMD appear to be ineffective (evening primrose...
aggression displayed by female Wistar rats (1) is dependent on the phase of the estrus cycle, (2) disappears after ovariectomy and can be revived by administration of estrogen plus progesterone, and (3) can be substantially reduced by treatment with SRIs. An influence of SRIs on hormone-related irritability may thus be observed also in nonhuman species.

The short time to onset of action of SRIs in PMD also supports the hypothesis that their efficacy is due to the anti-irritability effect of serotonin, rather than to antidepressant activity. Recent preliminary studies thus suggest that the beneficial effects of SRIs on symptoms such as irritability and affect lability in patients with stroke or dementia also are observed very shortly after the onset of treatment.35

It is not known which regions of the brain are involved in the beneficial effects of SRIs in PMD; likewise, we do not yet know where the effects of these drugs in conditions such as depression, panic disorder, and obsessive-compulsive disorder are being exerted. Brain regions of possible importance for the beneficial effects of SRIs in PMD are the amygdala and certain parts of the hypothalamus, since these are structures characterized by a high density of sex steroid receptors and serotonergic nerve terminals and assumed to be involved in the regulation of aggression. In accord with the theory that both hyperandrogenicity and serotoninergic dysfunction may play important roles in PMD, we have found that androgenization of female rats leads to a reduction in serotonin release in the amygdala.65

In conclusion, the impressive efficacy of SRIs in PMD is probably not equivalent to the antidepressant effect of these compounds, but tentatively related to the well-established anti-irritability effect of serotonin. In conjunction with the notion that sexual dysfunction is the most common side effect during long-term treatment with SRIs, the efficacy of SRIs in PMD supports the theory that a major role for serotonin—in man as well as in experimental animals—is to modulate sex steroid–related behavior. Future studies should further explore whether the SRIs are also effective for other sex steroid–related conditions and to what extent sex steroids are involved in other serotonin-related disorders (such as depression, eating disorders, and obsessive-compulsive disorder), as has recently been suggested.67–76

Drug names: alprazolam (Xanax and others), citalopram (Celexa), fluoxetine (Sarafem), paroxetine (Paxil), sertraline (Zoloft).

REFERENCES

1. Frank RT. Hormonal causes of premenstrual tension. Arch Neurol Psychiatry 1931;26:1053–1057
28. Eriksson E, Humble M. Serotonin in psychiatric pathophysiology, a review.

© Copyright 2002 Physicians Postgraduate Press, Inc.