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related “mixed mechanism” antidepressants are not
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T
clearly superior to traditional antidepressants in terms of
therapeutic efficacy,1–3 but the profile of clinical pharma-
cologic properties and side effects of these newer com-
pounds clearly differs from that of the older antidepres-
sants.4–16 Of particular importance is the capacity of SSRIs
and related antidepressants to inhibit the activity of human
cytochrome P450 enzymes responsible for the oxidative
biotransformation of many drugs used in clinical prac-
tice.17–24 The possibility of pharmacokinetic drug interac-
tions must be carefully considered during clinical use of
the current generation of antidepressants. This is a com-

plex problem, since each new antidepressant and/or its
pertinent in vivo metabolites can be anticipated to have a
different activity or potency as an inhibitor of each spe-
cific human cytochrome. Understanding of the clinical is-
sues has been helped by advances in the discipline of cyto-
chrome chemistry, including the biochemistry, molecular
genetics, and clinical functions of the human cytochromes
P450.25–31 Most clinical observations and studies of drug
interactions with new antidepressants are in fact largely
consistent with models based on molecular and in vitro
data.32–36 This field is advancing so rapidly that secondary
sources as well as approved labeling language may be out
of date or not in context. Review articles, product labeling
information, and promotional material therefore should be
evaluated critically, and recent primary sources consulted
whenever possible.

METABOLISM OF
ANTIDEPRESSANTS IN HUMANS

Clinically important metabolic products of some
newer antidepressants are listed in Table 1. Among the
SSRIs, fluoxetine, sertraline, and citalopram all undergo
N-demethylation in humans; the respective metabolites
are norfluoxetine, desmethylsertraline, and monodes-
methylcitalopram.19–24,37,38 Some of these metabolites ap-
pear in plasma at levels similar to or higher than those of
the parent drug, and the metabolites have values of elimi-
nation half-life longer than those of the respective parent
compounds. Fluoxetine and norfluoxetine are similar to
each other in SSRI activity,38 as are citalopram and mono-
desmethylcitalopram.39,40 Therefore parent drug and prin-
cipal metabolite both contribute to clinical efficacy and
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side effects during clinical treatment with fluoxetine or ci-
talopram. In addition, fluoxetine and norfluoxetine both
have cytochrome-inhibiting activity, and both will contrib-
ute to pharmacokinetic drug interactions. However, citalo-
pram and monodesmethylcitalopram have weak or negli-
gible cytochrome inhibiting activity. Desmethylsertraline,
the principal metabolite of sertraline, has only weak SSRI
activity compared to its parent compound41; both have
equivalent, although generally weak, cytochrome inhibit-
ing activity. In the case of paroxetine and fluvoxamine,
clinically important metabolites in human plasma have not
been identified.42,43

Nefazodone has the most complex metabolic profile
among the “mixed-mechanism” antidepressants.44 Nefazo-
done undergoes parallel biotransformations, yielding:
(1) hydroxy products formed by hydroxylation at 2 sites on
the molecule; (2) a triazoledione derivative; and (3) meta-
chlorophenylpiperazine (mCPP) following cleavage of the
molecule.45,46 The triazoledione and the aliphatic hydroxy
metabolite are present in human plasma in significant con-
centrations during chronic treatment with nefazodone,
whereas mCPP levels are relatively low.46 The antidepres-
sant activity of the metabolites of nefazodone is not es-
tablished. Venlafaxine is biotransformed by parallel de-
methylation reactions at 2 sites on the molecule.47 The
O-desmethyl derivative appears in plasma in levels exceed-
ing those of the parent drug,48,49 and both compounds have
antidepressant activity. N-desmethylvenlafaxine is a rela-
tively minor metabolite. Mirtazapine is biotransformed to
N-desmethylmirtazapine as the principal metabolite.50

IDENTIFICATION OF
RESPONSIBLE CYTOCHROMES

Knowledge of the specific human cytochromes mediat-
ing biotransformation of antidepressants allows health care
professionals to anticipate a number of clinically important
factors contributing to regulation of metabolism of the anti-
depressants. Examples of such factors include the possibil-
ity of genetic polymorphism, as occurs with drugs me-
tabolized by P450 2D6 or 2C1951–59; the possibility of
extrahepatic contributions to metabolism as occurs with sub-
strates of P450 3A that may be biotransformed in part in the
gastrointestinal tract mucosa; and the profile of other com-
pounds that may induce or inhibit metabolism (Table 2).

Research Methods
Cytochrome identification may be accomplished

through a combination of clinical pharmacologic ap-
proaches as well as in vitro models. For specific cyto-
chromes (P450 2C19 or 2D6) whose activities are regu-
lated by a genetic polymorphism, that cytochrome may be
inferred to participate in clearance of the drug under study,
if that drug’s clearance cosegregates with the clearance
or metabolic ratio of a test substrate for the corresponding

cytochrome, such as dextromethorphan for 2D6 or
S-mephenytoin for 2C19. This population cosegregation
approach has provided important data, but also has limita-
tions and drawbacks. It is useful only when metabolism is
mediated by polymorphically regulated cytochromes and
qualitative (but not quantitative) contributions of a spe-
cific cytochrome can be identified. Furthermore, the
method is indirect, and assumes that subject groups di-
vided as “normal” and “slow” metabolizers are otherwise
comparable with respect to activity of all other cyto-
chromes. Confounded associations cannot be excluded
and may lead to misidentification of responsible cyto-

Table 1. Newer Antidepressants, Their Principal Metabolic
Products, and Cytochromes Responsible for
Biotransformation*

Responsible
Parent Compound Important Metabolite(s) Cytochrome(s)

Predominant SSRI
Mechanism

Fluoxetine Norfluoxetine 2C9 (3A, 2D6)
Sertraline Desmethylsertraline 2C9, 3A (others

not established)
Citalopram Monodesmethylcitalopram 2C19, 3A (2D6)

(Didesmethylcitalopram)
Paroxetine None described to date 2D6
Fluvoxamine None described to date 1A2, 2D6

“Mixed” Mechanism
Nefazodone Triazoledione 3A

Hydroxynefazodone 3A
(mCPP) 3A

Venlafaxine O-Desmethylvenlafaxine 2D6
(N-Desmethylvenlafaxine) 3A, 2C19

Mirtazapine Desmethylmirtazapine 3A (1A2, 2D6)
(8-Hydroxymirtazapine) 2D6 (1A2)
(Mirtazapine N-oxide) 3A (1A2)

*Parentheses indicate metabolic products of relatively small
quantitative importance.

Table 2. Representative Index Reactions and Specific
Chemical Inhibitors for Studies of Human Cytochromes P450
Cytochrome P450 Index Substrates Specific Inhibitor

1A2 Phenacetin α-Naphthoflavone;
Caffeine furafyllinea

2C9 Phenytoin Sulfaphenazole
Tolbutamide

2C19 S-Mephenytoin Omeprazoleb

2D6 Dextromethorphan Quinidinec

Desipramine
Bufuralol
Sparteine
Debrisoquin

2E1 Chlorzoxazone Diethyldithiocarbamatea,c

3A Midazolam Ketoconazolec;
Triazolam troleandomycin (TAO)a;
Alprazolam gestodenea

Testosterone
Nifedipine

aMechanism-based inhibitor.
bSuitable as specific inhibitor in vitro (up to 10 µM); less suitable in
vivo due to metabolite, omeprazole sulfone.
cSuitable for human in vivo studies.
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chromes. Conclusions based on plasma concentrations of
metabolites as opposed to parent drug may also be con-
founded, since the area under the plasma concentration
curve for a metabolite depends on both its rate of forma-
tion from the parent compound as well as its own clear-
ance, which may be mediated by a different cytochrome. A
controlled crossover study of clearance of the drug in
question, with and without coadministration of specific
chemical inhibitor (Table 2), may presumptively identify
the corresponding cytochrome if clearance is substantially
reduced by the specific inhibitor. However such inhibitors
must be safe and appropriate for clinical use, as well as
have reasonable inhibitory specificity for the cytochrome
in question.

In vitro models are being increasingly applied to identi-
fication of cytochromes mediating specific metabolic bio-
transformations.25–36 Microsomal preparations of human
liver in vitro contain the various human cytochromes in
proportion to their quantitative representation in human
liver in vivo. The capacity of a relatively specific chemical
inhibitor (Table 2) to inhibit biotransformation of a spe-
cific substrate to its initial metabolite constitutes evidence
supporting the participation of the corresponding cyto-
chrome. The in vitro approach using chemical inhibitors
has the obvious advantages over clinical studies of being
less costly, more rapid in implementation, free of risk of
human drug exposure, as well as offering a larger number
of potential chemical inhibitors for this purpose and the
possibility of assigning both quantitative and qualitative
contributions of specific cytochromes. Antibodies with
relatively specific inhibitory activity against the various
human cytochromes can also be used to support or confirm
data from in vitro chemical inhibition studies.60 In recent
years, the versatility of in vitro models has been increased
by the availability of microsomes containing pure human
cytochromes as expressed by cDNA-transfected human
lymphoblastoid cells,61 or other expression systems.62

Among the limitations of in vitro approaches is the
need to utilize substrate concentrations that are one or
more orders of magnitude higher than those encountered
clinically, even accounting for the extensive uptake of
some lipophilic drugs into liver that produces intrahepatic
concentrations higher than those in plasma (Figure 1). In
vitro studies of high substrate concentrations can be ex-
trapolated down to a clinically relevant concentration
range as long as mathematical models remain valid over
the entire range.63 However, a “high-affinity” metabolic
reaction (i.e., one with a low Km) that contributes impor-
tantly to a drug’s biotransformation at clinically relevant
concentrations could be overlooked or underestimated in
vitro if assay sensitivity limits impede study of substrate
concentrations in that low range. The specificity of chemi-
cal inhibitor probes is of concern for in vitro as well as in
vivo models. No inhibitory probe is completely specific
for its corresponding cytochrome—all ultimately become

nonspecific at higher concentrations.64 Ketoconazole, for
example, has a relatively high specificity as an index
inhibitor for P450 3A, as long as concentrations are
below 1.0 µM; at higher concentrations specificity dimin-
ishes.64–66 Omeprazole appears to have acceptable speci-
ficity as a P450 2C19 inhibitor at concentrations up to 10
µM. Above this range, specificity diminishes.67 In vivo,
omeprazole is biotransformed to a sulfone metabolite that
has P450 3A inhibiting capacity. The SSRI fluvoxamine is
not specific enough to serve as an index inhibitor, since it
has moderate to strong inhibitory activity against P450
1A2, 2C19, 2C9, and 3A. Finally, the inferential strength
of data from cDNA-expressed human cytochromes must
be weighed against the intrinsic (and deliberate) limita-
tions imparted by study of a single cytochrome removed
from its usual cytochrome “mix.” Studies of individual cy-
tochromes can yield specific quantitative data on their ac-
tivity as mediators of a specific reaction. However, an in-
ference about the relative activity of different cytochromes
either in vivo, or in liver microsomes in vitro, requires an
independent estimate of the relative quantitative abun-
dance of the cytochromes in question (Figure 2).61

Cytochromes Mediating
Biotransformation of Antidepressants

In vivo and in vitro studies have collectively provided
estimated contributions of specific cytochromes to the me-
tabolism of the newer antidepressants (Table 1). Clearance
of fluoxetine in human subjects cosegregates with the
P450 2D6 metabolic polymorphism, suggesting the con-
clusion that fluoxetine clearance is mediated by that cyto-
chrome.68 In vitro, however, 2D6 appears to be relatively
unimportant, whereas 2C9 is the principal cytochrome,
with a possible further contribution of 3A.69,70 The discrep-
ancy between in vivo and in vitro results could be ex-

Figure 1. Schematic Representation Showing a Typical Range
of Antidepressant (and Metabolite) Concentrations
Encountered in Human Plasma and Liver In Vivo, Compared
With the Range Typically Studied Using In Vitro Models
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plained by a confounded association of 2D6 phenotype in
vivo with extremes in 2C9 activity. The in vitro methods
may also have overlooked the participation of a low Km

(high-affinity) reaction mediated by P450 2D6 at low sub-
strate concentrations that cannot be reliably studied. Ser-
traline clearance in vivo did not cosegregate with 2D6 me-
tabolizer phenotype,68 but the cytochromes contributing to
its metabolism are not clearly established. P450 2C9 and
3A are likely to be involved to some degree, but the other
contributing cytochromes are not known. Data on paroxe-
tine and fluvoxamine are mostly indirect. Clearance of
paroxetine cosegregates with 2D6 phenotype in vivo71,72;
involvement of 2D6 is also supported by in vitro data.73

Fluvoxamine clearance is associated with 1A2 and 2C9
activity in vivo, based on population cosegregation
data,74,75 as well as the observation of induced fluvox-
amine clearance in cigarette smokers.76 Biotransformation
of citalopram to monodesmethylcitalopram depends on
both 3A and 2C19 in vitro, with a possible small contribu-
tion of 2D677,78; citalopram clearance in vivo cosegregates
with 2C19 phenotype.38 Nefazodone clearance is essen-
tially completely dependent on P450 3A, based on in vitro
data.79 Formation of the principal metabolite of venlafax-
ine (O-desmethylvenlafaxine) is dependent mainly on
2D6; production of N-desmethylvenlafaxine, the minor
metabolite, depends on a combination of 3A and 2C19.80,81

Formation of the principal demethylated product of
mirtazapine is mediated mainly by 3A, with additional
contributions of 1A2 and 2D6.50

INHIBITION OF HUMAN CYTOCHROME ACTIVITY
BY ANTIDEPRESSANTS

Research Methods
In vivo and in vitro approaches similar to those used for

cytochrome identification are applicable to evaluation of
antidepressants and their metabolites as potential inhibi-
tors of specific human cytochromes. A controlled clinical
pharmacokinetic study design, in which clearance of an
index substrate (Table 2) is determined with and without

coadministration of the antidepressant in question, di-
rectly addresses the question in the human context. How-
ever, such studies have drawbacks, since they are costly,
time-consuming, and involve finite (although small) risks
of human drug exposure. Furthermore when the antide-
pressant being studied undergoes in vivo biotransforma-
tion itself,82 any metabolic inhibition that is observed
could be due to parent drug, metabolites, or both. There is
no direct method to resolve the relative contributions of
multiple potential inhibitors that are present simulta-
neously, nor of estimating the quantitative inhibitory po-
tency of any one inhibitor.

Using in vitro models of human liver microsomes, a se-
ries of drugs and/or their metabolites can be screened
relatively quickly at low cost, and with no human drug ex-
posure, to determine quantitative inhibiting potency
against specific index reactions presumed to reflect the ac-
tivity of specific cytochromes with relatively high speci-
ficity (Table 2).32,36,83 One approach uses a fixed concen-
tration of the index substrate coincubated with variable
concentrations of the inhibitor. The relation of decrement
in metabolite formation rate versus inhibitor concentration
yields an estimate of a 50% inhibitory concentration (IC50)
(Figure 3). Values of IC50 are suitable for comparing the
relative potency of a series of inhibitors, and are indepen-
dent of the specific biochemical mechanism of inhibition.
On the other hand, IC50 values depend on substrate con-
centration when inhibition is competitive, and cannot be
directly applied to in vitro-in vivo scaling models, except
when inhibition is established as having a noncompetitive
mechanism.

A second approach utilizes the inhibition constant (Ki),
which reflects inhibitory potency in reciprocal fashion.
Determination of Ki involves more work, time, and ex-
pense, since it requires study of multiple substrate concen-
trations and multiple inhibitor concentrations (Figure 3).
Ki is model-dependent, since it depends upon the specific
mechanism of inhibition,84 which may not be established.
Once determined, Ki is independent of substrate con-
centration and can be used under some defined conditions
for quantitative in vitro-in vivo scaling of drug interac-
tions.32–36 Although Ki is less than or equal to IC50 as a gen-
eral rule, Ki will be equal to IC50 if inhibition is noncom-
petitive, or if inhibition is competitive and the substrate
concentration is far below the reaction Km. Ki and IC50

both provide similar estimates of relative inhibitory po-
tency for a series of inhibitors of a specific reaction, but
the absolute values of Ki and IC50 do not cross different
substrates for the same cytochrome. As an example, the
inhibitory Ki values for SSRIs versus sparteine oxidation85

do not equal the corresponding Ki values versus desipra-
mine hydroxylation,65,86 although the 2 metabolic reac-
tions are mediated mainly by 2D6. However the relative
inhibitory potency should be maintained across substrates
for the same cytochrome.

Net Importance

Activity
(Vmax, Vmax/Km ratio per pMole CYP)

Quantity
(absolute or relative abundance)

Figure 2.  The Net Importance of a Specific Cytochrome as a
Contributor to a Metabolic Biotransformation In Vivo, or in
Liver Microsomal Preparations In Vitro, Depends on Two
Factors*

*The two factors are the activity of that cytochrome as a mediator of
the reaction, related to the Vmax and to the Vmax /Km ratio (intrinsic
clearance), and the quantitative abundance of that cytochrome.
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Review of the Data Base (Table 3)
All sources consistently identify fluvoxamine as a

highly potent inhibitor of P450 1A2,66,87,88 causing large
reductions in clearance of 1A2 substrates such as caffeine,
clozapine, tacrine, and chloroguanide.89–93 Although no
systematic study has been published, a significant interac-
tion of fluvoxamine with theophylline should be antici-
pated. Some of the other antidepressants show a weak to
moderate capacity to inhibit 1A2 in vitro,66 but significant

interactions in vivo are not clearly documented. Fluvox-
amine also is the most potent of the newer antidepressants
as an in vitro inhibitor of P450 2C9.94 Labeling informa-
tion describes a highly significant interaction of fluvox-
amine with warfarin in a controlled pharmacokinetic
study, but no published data are available. Fluoxetine (in
particular the S-enantiomer) also is a significant 2C9 in-
hibitor in vitro,94 and a number of case reports describe
interactions with phenytoin in vivo.95 Sertraline and des-
methylsertraline are weak 2C9 inhibitors in vitro,94 and
sertraline did not interact with tolbutamide or phenytoin
in vivo.96,97 Nefazodone also produced no interaction with
phenytoin in a clinical study.98 Fluvoxamine is a highly
potent inhibitor of 2C19, and significant interactions with
2C19 substrates should be anticipated in vivo.93,99,100 Some
of the other antidepressants demonstrate some degree of
2C19 inhibition in vitro, but the clinical significance of
this is not established.

Inhibition of P450 2D6 activity by newer antidepres-
sants is a topic receiving considerable attention in pharma-
ceutical promotional materials, which not uncommonly
encourage the implication that inhibition of 2D6 by SSRIs
is not clinically important, or that differences among
SSRIs are unclear or indistinct. Particular studies or re-
sults may be cited out of their proper context to support
this view. However, the scientific data on antidepressants
and P450 2D6 are unequivocal, with close agreement of in
vitro and in vivo results.32,65,86 Fluoxetine, norfluoxetine,

Table 3. Inhibition of Human Cytochromes P450 by Newer
Antidepressants*

Cytochrome P450

Antidepressant 1A2 2C9 2C19 2D6 2E1 3A

Fluoxetine + ++ + to ++ +++ — +
Norfluoxetine + ++ + to ++ +++ — ++

Sertraline + + + to ++ + — +
Desmethylsertraline + + + to ++ + — +

Paroxetine + + + +++ — +
Fluvoxamine +++ ++ +++ + — ++
Citalopram + 0 0 0 0 0

Desmethylcitalopram 0 0 0 + 0 0
Nefazodone 0 0 0 0 — +++

Triazoledione 0 0 0 0 — +
Hydroxynefazodone 0 0 0 0 — +++

Venlafaxine 0 0 0 0 — 0
O-Desmethylvenlafaxine 0 0 0 0 — 0

Mirtazapine 0 — — + — 0
*0 = minimal or zero inhibition; + = mild inhibition;  ++ = moderate
inhibition; +++ = strong inhibition. Dash (—) indicates no data
available.

Figure 3. Comparison of Two In Vitro Methods for Determining the Inhibitory Potency of Quinidine Versus Desipramine
Hydroxylation, a Reaction Mediated Mainly by Cytochrome P450 2D6*

*Studies were performed using microsomal preparations from human liver.
Left: A fixed concentration of desipramine (100 µM), considerably higher than the Km value of 10.2 µM, was incubated with varying concentrations
of quinidine. Reaction velocities were expressed as a percentage of the control value without inhibitor. Nonlinear regression was used to determine
the quinidine IC50 value of 0.46 µM.
Right: Varying concentrations of desipramine were incubated with liver microsomes in the control conditions (without inhibitor), and with
coaddition of two concentrations of quinidine. Control data were analyzed by nonlinear regression to determine the reaction Vmax and Km. Data with
coaddition of quinidine were analyzed under the assumption of Michaelis-Menten kinetics with competitive inhibition. Note that the Ki value for
quinidine is smaller than the IC50 value.
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and paroxetine are highly potent inhibitors of P450
2D6.65,86,101,102 Usual therapeutic doses of fluoxetine or par-
oxetine, producing a usual range of steady-state plasma
concentrations, typically impair clearance of 2D6 sub-
strates such as desipramine by 70% or more, with steady-
state plasma desipramine concentrations increasing 4-fold
or more (Figure 4).102–108 Interactions of this magnitude
obviously are of clinical importance.102 In contrast, sertra-
line, desmethylsertraline, and fluvoxamine have nearly an
order of magnitude lower potency as 2D6 inhibitors than
do fluoxetine, norfluoxetine, and paroxetine.65,86 Coad-
ministration of sertraline with desipramine will increase
steady-state desipramine concentrations by 20% to 50%,
depending on the daily dose and plasma concentration of
sertraline (and desmethylsertraline) (Figure 4).103,104,108 Ci-
talopram, nefazodone, venlafaxine, and mirtazapine are at
most weak 2D6 inhibitors.50,80,89,101,109,110 It should be em-
phasized that inhibition of 2D6 activity will be evident
only in subjects of the genetically “normal” metabolizer
phenotype. Genetically “poor” metabolizers lack func-
tional enzyme and already have low clearance of 2D6 sub-
strates regardless of inhibitor coadministration.105,111

Biotransformation of drugs by cytochrome P450 3A is
strongly inhibited by nefazodone both in vitro79,112 and in
vivo.113,114 In clinical studies, nefazodone produces large
decrements in clearance of 3A substrates such as alprazo-
lam and triazolam.113,114 Inhibition is attributable to nefa-
zodone itself and to the hydroxylated metabolite, but not
to the triazoledione metabolite or to mCPP.79 Among the
other antidepressants, fluoxetine itself is a weak 3A inhibi-

tor, but N-demethylation of this compound to form
norfluoxetine results in moderate 3A inhibiting potency.
This is a consistent finding across many in vitro studies (see
review in reference 23). In clinical studies, coadministra-
tion of fluoxetine with substrates biotransformed partly or
entirely by P450 3A isoforms (such as diazepam, alpraz-
olam, carbamazepine, and amitriptyline) causes impaired
clearance and elevated plasma concentration of these sub-
strates (reviewed in reference 23). Some publications en-
courage the incorrect conclusion that fluoxetine and
norfluoxetine are unlikely to be clinically important 3A in-
hibitors.115,116 In any case it is clear that inhibition of 3A
activity in vivo by fluoxetine, when it occurs, is attributable
mainly to norfluoxetine,23 which reaches significant plasma
concentrations when fluoxetine treatment proceeds for a
period of time.19,20 A reported noninteraction of fluoxetine
and terfenadine, for example, is attributable to the relatively
low plasma norfluoxetine concentrations in the study par-
ticipants,116 inasmuch as norfluoxetine clearly inhibits
terfenadine metabolism in vitro.117 When fluoxetine treat-
ment is discontinued, 3A inhibition may persist for some
time thereafter due to slow elimination of norfluoxetine.118

Understanding of 3A inhibition by fluoxetine is nonetheless
incomplete, since fluoxetine did not importantly inhibit
triazolam clearance119 despite adequate plasma norfluox-
etine levels and clear evidence of inhibition in vitro.112

Sertraline, desmethylsertraline, and paroxetine are weak 3A
inhibitors in vitro.86 Sertraline produces small or undetect-
able clinical interactions with 3A substrates such as diaz-
epam,120 alprazolam (S. H. Preskorn, M.D., et al., unpub-
lished data), and carbamazepine121; paroxetine produced no
interaction with terfenadine. Fluvoxamine is a moderate 3A
inhibitor in vitro86 and in vivo.122,123 Citalopram (L. L.
von Moltke et al., unpublished data), venlafaxine,109,124 and
mirtazapine50 are weak or negligible 3A inhibitors.

Citalopram and monodesmethylcitalopram are negli-
gible inhibitors of P450 2E1 (L. L. von Moltke et al., un-
published data). The activity of other antidepressants as in-
hibitors of P450 2E1 has not been determined.

COMMENT

The new generation of antidepressant agents made
available over the last decade has broadened the therapeu-
tic options for depressive illness, but also poses new com-
plexities in terms of differences among drugs in metabolic
disposition as well as the propensity to produce drug inter-
actions. Treatment of depression in the current era requires
application of therapeutic skills together with principles of
clinical pharmacology. The use of multiple medications by
depressed patients may contribute to increasing the prob-
ability of drug toxicity due to drug interactions. Clinicians
can utilize in vitro and in vivo data to make a more in-
formed choice among the newer antidepressants and an-
ticipate and avoid possible drug interactions.83,102,125

Figure 4. Mean ± SE Steady-State Plasma Desipramine
Concentrations in Studies of Human Volunteer Subjects*

*Adapted in part from reference 104. One group of volunteers received
desipramine 50 mg daily in the control condition and with
coadministration of sertraline 50 mg daily. A second group of
volunteers received the same dose of desipramine in the control
condition, and with coadministration of paroxetine 20 mg daily.
Sertraline causes a small and statistically significant increase in plasma
desipramine levels, whereas paroxetine causes a very large increase.
The differential inhibition of desipramine clearance by sertraline and
paroxetine in vivo is entirely consistent with changes anticipated based
on in vitro studies.
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Drug names: alprazolam (Xanax), amitriptyline (Elavil and others), car-
bamazepine (Tegretol and others), chlorzoxazone (Paraflex), citalopram
(Celexa), clozapine (Clozaril), desipramine (Norpramin and others), di-
azepam (Valium and others), fluoxetine (Prozac), fluvoxamine (Luvox),
ketoconazole (Nizoral), midazolam (Versed), nefazodone (Serzone), ni-
fedipine (Adalat, Procardia), omeprazole (Prilosec), paroxetine (Paxil),
phenytoin (Dilantin and others), sertraline (Zoloft), terfenadine
(Seldane), tolbutamide (Orinase), triazolam (Halcion), venlafaxine
(Effexor).
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