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ttention-deficit/hyperactivity disorder (ADHD) is
characterized by inattention, impaired behavioral
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Neuropsychological and imaging studies have shown that attention-deficit/hyperactivity disorder
(ADHD) is associated with alterations in prefrontal cortex (PFC) and its connections to striatum and
cerebellum. Research in animals, in combination with observations of patients with cortical lesions,
has shown that the PFC is critical for the regulation of behavior, attention, and affect using representa-
tional knowledge. The PFC is important for sustaining attention over a delay, inhibiting distraction,
and dividing attention, while more posterior cortical areas are essential for perception and the alloca-
tion of attentional resources. The PFC in the right hemisphere is especially important for behavioral
inhibition. Lesions to the PFC produce a profile of distractibility, forgetfulness, impulsivity, poor
planning, and locomotor hyperactivity. The PFC is very sensitive to its neurochemical environment,
and optimal levels of norepinephrine and dopamine are needed for proper PFC control of behavior and
attention. Recent electrophysiologic studies in animals suggest that norepinephrine enhances “sig-
nals” through postsynaptic α2A-adrenoceptors in PFC, while dopamine decreases “noise” through
modest levels of D1-receptor stimulation. Blockade of α2-receptors in the monkey PFC re-creates the
symptoms of ADHD, resulting in impaired working memory, increased impulsivity, and locomotor
hyperactivity. Genetic alterations in catecholamine pathways may contribute to dysregulation of PFC
circuits in this disorder. Stimulant medications may have some of their therapeutic effects by increas-
ing endogenous stimulation of α2A-adrenoceptors and dopamine D1-receptors in the PFC, optimizing
PFC regulation of behavior and attention. (J Clin Psychiatry 2006;67[suppl 8]:7–12)
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(PFC), cerebellum, and possibly striatum (reviewed by
Giedd et al.1). Furthermore, our increasing understanding
of catecholamine actions on these circuits provides insight
into the mechanism of action of medications used to
treat this disorder. These data also help us to understand
how genetic changes in catecholamine pathways could re-
sult in ADHD symptomatology. This article briefly re-
views the anatomy and function of the higher association
cortices relevant to ADHD, the connections of these cor-
tical areas to the basal ganglia and cerebellum, and the
powerful modulation of these circuits by dopamine and
norepinephrine.

THE FUNCTIONAL CONTRIBUTIONS
OF HIGHER ASSOCIATION CORTICES

The association cortices make distinct contributions
to our attentional experience (summarized in Figure 1): the
higher-order sensory cortices, such as the inferior temporal
cortex, process sensory features and can focus resources on
a particular detail, e.g., the color red; the posterior parietal
association cortex allocates attentional resources, allowing
us to orient attention in time and space; and the PFC regu-
lates attention, inhibiting processing of irrelevant stimuli,
sustaining attention over long delays, and dividing and co-
ordinating attention. These cortical areas are intricately
interconnected,2 creating both feedforward and feedback

A
inhibition, and increased motor activity. Inattention is
a nonprecise term and thus can lead to confusion in diag-
nosis. For many patients, inattention refers to increased
distractibility, poor sustained attention, and increased sus-
ceptibility to interference, i.e., impaired regulation of at-
tention. However, the term inattention can also be applied
to symptoms resembling perceptual neglect, i.e., the in-
ability to allocate sufficient attentional resources to stim-
uli for adequate perception. Recent understanding of the
higher cortical circuits underlying attention and behavior-
al regulation provides important insights to navigate these
complexities and helps to elucidate the likely neural bases
underlying the symptoms of ADHD. These findings com-
plement those arising from imaging studies of ADHD
that have found volumetric differences in prefrontal cortex
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loops3 that work together to provide a unified attentional
experience. The PFC plays a similar role in regulating
movement, inhibiting inappropriate behavioral responses.
The following is a brief review of these cortical systems.

Inferior Temporal Cortex
The inferior temporal cortex is specialized for pro-

cessing visual features, determining “what” things are
based on their color and shape. (In contrast, the superior
temporal cortex processes auditory information, perform-
ing both featural and spatial analysis. This work has pro-
ceeded more recently4 and thus will not be discussed in
this review). Processing of a visual stimulus by inferior
temporal neurons can be either diminished or enhanced,
depending upon sensory conditions and internal directions
(reviewed in Desimone5 and Kastner et al.6). The activity
of these neurons is captured by salient stimuli (e.g., high
contrasts), but repeated experience with the same visual
stimulus leads to decreased responding.5 This decrease
may account for the boredom of repetition, e.g., in a
school setting. Processing of visual stimuli is also dimin-
ished by interference from nearby stimuli in the same vi-
sual field. Both of these suppressive effects result from in-
trinsic properties of inferior temporal neurons and can be
prevented by inputs from the PFC or parietal association
cortex. These “top-down” projections thus allow for di-
rected selective attention of visual feature processing.

Posterior Parietal Association Cortex
The parietal association cortex plays a critical role

in “paying attention.”7 This cortex is specialized for ana-
lyzing movement and spatial relationships, for analyzing

quantity and constructing spatial maps, and for orienting
attention in time and space.8 Lesions to the right posterior
parietal association cortex can result in contralateral
neglect: the loss of perception for the left side of visual
space. This cortex is therefore critical to conscious atten-
tion. Recordings from parietal neurons in monkeys are
consistent with a role in the allocation of attention, includ-
ing the covert movement of attention.9 Neurons in area 7a
also appear to create world-referenced maps of visual
space,10 and they project this information to the PFC,
which uses this information to guide behavior during spa-
tial working memory tasks.

Prefrontal Cortex
The PFC has particular relevance to ADHD, as imaging

studies indicate that ADHD patients often have smaller
PFC volume, particularly on the right side.11–13 The PFC
uses representational knowledge, i.e., working memory, to
guide overt responses (movement) as well as covert re-
sponses (attention), allowing us to inhibit inappropriate
behaviors and to gate the processing of irrelevant stimuli
(reviewed in references 14–17). Patients with PFC lesions
are easily distracted, have poor concentration and organi-
zation, are more vulnerable to disruption from proactive
interference, and can be impulsive, especially when the le-
sions involve the right hemisphere.18 PFC lesions impair
the ability to sustain attention, particularly over a delay,
and reduce the ability to gate sensory input.19 PFC lesions
impair divided and focused attention, and these attentional
deficits have been associated with lesions in the left, supe-
rior PFC.15 PFC lesions similarly impair attentional func-
tion in monkeys and rats, rendering animals more vul-
nerable to distraction or other types of interference and
impairing attentional regulation on set-shifting tasks.20,21

Electrophysiologic studies in monkeys have shown that
PFC neurons are able to hold modality-specific informa-
tion “on-line” over a delay and use this information to
guide behavior in the absence of environmental informa-
tion. Importantly, PFC neurons can maintain delay-related
firing in the presence of distracting stimuli, protecting per-
formance from interference.22 Delay-related firing also un-
derlies behavioral inhibition, i.e., the ability to suppress a
prepotent response.23 Therefore, the cellular basis of many
executive functions can be studied in monkeys performing
higher cognitive tasks.

CORTICAL PROJECTIONS TO
BASAL GANGLIA AND CEREBELLUM

The association cortices project down to both the basal
ganglia and cerebellum in a series of parallel, closed-loop
circuits.24 The PFC and parietal and temporal association
cortices all project to the caudate nucleus as part of the
“cognitive circuit” through the basal ganglia, which in
turn projects back to the PFC and premotor cortices. Simi-

Figure 1. Brain Regions Involved in the Regulation of
Attention in the Primate Brain as Shown on the Lateral
Surfacea

aThe basal ganglia circuits are not evident from this view. The basal
ganglia are thought to contribute to the automatic planning, selection,
initiation, and execution of complex movements and thoughts.
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larly, the PFC and parietal association cortices project to
the cerebellum by way of the pontine nuclei, and the cer-
ebellum in turn projects back to the association cortices by
way of dentate projections to thalamus. Although the basal
ganglia and cerebellum have long been known to be im-
portant for the regulation of movement, their role in higher
cognitive function is just beginning to be researched. If
these structures influence cognition in a manner similar to
their influences on movement, the basal ganglia may be
important for the planning, selection, initiation, and ex-
ecution of thoughts, while the cerebellum may serve as
a “biological gyroscope,” correcting cognitive function on
a faster timescale. Recent data suggest that the cerebellar
circuits may influence basal ganglia circuits via projec-
tions through the intralaminar thalamic nuclei (P. Strick,
Ph.D.; electronic communication; August 2005). Parts of
the cerebellum have been found to be consistently smaller
in children with ADHD.25

Interestingly, the basal ganglia are powerfully modu-
lated by dopamine, while the cerebellum is heavily inner-
vated by norepinephrine. Dopamine promotes thalamocor-
tical stimulation of movement and thought via D1-receptor
activation of the direct pathways and D2 inhibition of
the indirect pathways in basal ganglia (for example, see
Steiner and Gerfen26). Norepinephrine modulates cerebel-
lar processing through β-receptor mechanisms that ac-
tivate cyclic adenosine monophosphate (cAMP)/protein
kinase A (PKA) intracellular signaling (for example, see
Cartford et al.27). Therefore, genetic alterations that affect
catecholamine actions may alter basal ganglia and cerebel-
lar function. In addition to these dense subcortical projec-
tions, both dopamine and norepinephrine innervate the as-
sociation cortices in primates,28,29 and this will be the focus
of the current review.

MODULATION OF CORTICAL CIRCUITS

There are multiple arousal systems that project to
the cortical mantle. Although the present article focuses
on dopamine and norepinephrine, the reader should re-
member that many more molecules perform related func-
tions, e.g., acetylcholine, serotonin, and orexin. Research
on the modulatory influences of dopamine and norepi-
nephrine on parietal and temporal cortical function is lim-
ited, although existing research suggests that norepineph-
rine may enhance “signal/noise” processing in these areas
via the actions of β- and α1-adrenoceptors and impair
the cognitive operations of these brain regions via α2-
adrenoceptors.30–32 There has been a much greater tradition
of studying catecholamine influences on PFC, given the
landmark findings of Brozoski et al.,33 who showed that
catecholamine depletion in PFC is as destructive as abla-
tion of the tissue itself. The following is a brief summary
of this field (for more detailed reviews, see Arnsten and
Robbins34 and Arnsten and Li35).

Dopamine
Dopamine acts at both the D1 (D1 and D5) and D2 (D2,

D3, and D4) receptor families. It should be noted that
norepinephrine has very high affinity for D4-receptors36

and thus should really be considered a catecholamine re-
ceptor rather than a dopamine receptor. Currently, there
are no pharmacologic agents that distinguish D1- from
D5-receptors; thus, these receptors are discussed as 1 en-
tity. Finally, as there is little information on D3-receptor
actions in PFC at this time, this receptor is not reviewed.

D1-receptor actions. The PFC is rich in D1-receptors,
with a bilaminar distribution found in both upper and
lower layers.37 The D1 subtype is especially focused on
spines, while the D5 subtype is found more commonly on
shafts of pyramidal neurons.38 Stimulation of this family
of receptors in the PFC produces an inverted “U”-shaped
dose-response influence on the working memory and at-
tention regulation processes of the PFC.39,40 While modest
levels of D1-receptor stimulation are essential to PFC
function, high levels of dopamine release, e.g., during ex-
posure to stress, impair working memory. Therefore, high
doses of D1-agonist impair working memory performance.
This inverted U has been observed in mice,41 rats,42 mon-
keys,43 and humans.44 A similar inverted “U” has been
described at the cellular level (S. Vijayraghavan, B.S.; M.
Wang, Ph.D.; S. G. Birnbaum, Ph.D., et al.; manuscript
submitted), where moderate levels of D1-receptor stimu-
lation suppress neuronal processing of irrelevant infor-
mation (i.e., reduce “noise”), sharpening tuning and ren-
dering PFC firing more selective. In contrast, high levels
of D1-receptor stimulation reduce the relevant signals
as well as noise, thus producing a nonspecific inhibition
of cell firing. These effects most likely occur through
cAMP/PKA intracellular signaling (S. Vijayraghavan,
B.S.; M. Wang, Ph.D.; S. G. Birnbaum, Ph.D., et al.;
manuscript submitted).

Human experiments also note an inverted “U,” with the
more D1-like compounds being most effective in improv-
ing working memory.45 Interestingly, genetic studies in
humans indicate similar results.44 Some people have a sub-
stitution (methionine for valine) in the enzyme catechol
O-methyltransferase that breaks down dopamine and nor-
epinephrine. The methionine substitution results in weaker
enzyme activity and thus more dopamine. Under basal
conditions, subjects with this substitution have better
working memory and more efficient PFC activation than
those with the native enzyme. However, following am-
phetamine and/or stress exposure, those with the methi-
onine substitutions become markedly impaired (presum-
ably due to excessive dopamine stimulation), while those
with the native enzyme improve (presumably due to more
optimal dopamine levels).44

D2-receptor actions. There has been far less research
on the influence of D2-receptor stimulation on PFC func-
tion. D2-receptors are concentrated on neurons in layer 5
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(the output layer that projects to striatum) and overall show
lower levels of binding than the D1-receptor family.37 Ini-
tial studies showed that blockade of D2-receptors in the
PFC of monkeys performing a working memory task had
no effect on performance.46 However, there was no room
for improvement in this task, and studies in rats suggest
that excessive D2-receptor stimulation impairs working
memory abilities.47 Recent electrophysiologic studies have
shown that D2-receptor stimulation increases the response-
related firing of PFC neurons in monkeys performing a
working memory task,48 consistent with the localization of
these receptors on cells projecting to areas guiding move-
ment. The response-related firing may be a form of corol-
lary discharge, informing the brain that a response has
taken place. Given the potential role of impaired corollary
discharge in hallucinations, and the role of D2 blockade in
antipsychotic efficacy, these findings may have special rel-
evance to schizophrenia.

D4-receptor actions. D4-receptors are concentrated on
γ-aminobutyric acid (GABA)-ergic interneurons49 and ap-
pear to inhibit GABA transmission via Gi-mediated reduc-
tion of cAMP signaling.50 Weaker D4-receptor actions thus
lead to excessive GABA transmission and suppression of
pyramidal cell firing (Wang et al.50 and M. Wang, Ph.D.;
A.F.T.A.; manuscript in preparation). ADHD is associated
with the increased incidence of the 7-repeat polymorphism
of the D4-receptor, which weakens D4-receptor efficacy.51,52

Therefore, the basic physiology in animals would suggest
that subjects with this polymorphism would have insuf-
ficient D4 inhibition of GABA and thus insufficient PFC
pyramidal cell firing. Stimulant medication may increase
endogenous dopamine (and norepinephrine) stimulation
of D4-receptors, thus normalizing GABAergic inhibition.
However, there is also some evidence from basic physi-
ologic studies indicating that D4-receptors can inhibit pyra-
midal cells,50 so the actions of these receptors are not en-
tirely straightforward.

Norepinephrine
Norepinephrine acts at α1- and α2-adrenoceptors and

β1-, β2-, and β3-adrenoceptors. Research to date indicates
that it has distinct actions at these receptors, improving
PFC function through actions at α2A-receptors and im-
pairing working memory through actions at α1- and β1-
receptors.

ααααα2A-Adrenoceptor actions. Norepinephrine improves
PFC function through actions at postsynaptic53,54 α2A-
receptors55 at both the cognitive and cellular levels (re-
viewed in Arnsten and Li35). The α2A-agonist guanfacine
improves working memory, attention regulation, behavior-
al inhibition, and/or planning in rodents,55,56 monkeys,57–60

and humans.61 These enhancing effects are most likely me-
diated through Gi-mediated suppression of cAMP intracel-
lular signaling.62 Electrophysiologic studies have shown
that α2-receptor stimulation increases delay-related fir-

ing,63 the cellular measure of working memory and behav-
ioral inhibition (see Prefrontal Cortex). This increase is es-
pecially observed for the preferred spatial direction, indi-
cating that α2A-receptor stimulation increases “signals” in
PFC (M. Wang, Ph.D.; A.F.T.A.; manuscript in prepara-
tion). Conversely, blocking α2-receptors in monkey PFC
with yohimbine markedly reduces delay-related cell firing63

and impairs working memory64 as well as impulse control.65

Yohimbine infusions into PFC have also been shown to
induce locomotor hyperactivity.66 Therefore, insufficient
α2-receptor stimulation in monkey PFC can re-create the
profile of ADHD. In this regard, it is of interest that ADHD
has been associated with genetic alterations in dopamine
β-hydroxylase (DBH), the enzyme that synthesizes norepi-
nephrine. It is possible that weaker DBH would lead to in-
sufficient endogenous stimulation of α2A-receptors in PFC,
resulting in a profile similar to that of yohimbine-treated
monkeys. Stimulant or α2A-agonist medications might cor-
rect this condition. Guanfacine is currently used for treating
ADHD,67–69 especially in patients who cannot take stimu-
lants, e.g., those with tics or risk of drug abuse.

ααααα1-Adrenoceptor actions. In contrast to α2-receptor
mechanisms, high levels of norepinephrine release (e.g.,
during stress) impair PFC function through actions at α1-
receptors coupled to protein kinase C (PKC) intracellular
signaling.70 Thus, agonists such as phenylephrine (similar
to pseudoephedrine) impair working memory when infused
into the PFC in rats71 and monkeys.59 Similar effects are
observed at the cellular level, where α1-receptor stimula-
tion suppresses delay-related neuronal firing.70 Conversely,
α1-antagonists such as urapidil and prazosin protect PFC
cognitive abilities, preventing stress-induced PFC impair-
ment.72,73 The PKC inhibitor chelerythrine also protects
PFC function at the behavioral and cellular levels.70 On the
basis of this research in animals, prazosin is being success-
fully used to treat patients with posttraumatic stress dis-
order.74 Interestingly, most effective antipsychotic med-
ications, including the “atypical” neuroleptics, have potent
α1-blocking properties, and overactivity of the PKC signal-
ing pathway has been associated with mania75 and possibly
schizophrenia.76 These mechanisms may be particularly rel-
evant in children who have symptoms resembling ADHD
that worsen with stimulant treatment and who are found to
have childhood bipolar disorder.77

βββββ1-Adrenoceptor actions. Recent studies suggest
that stimulation of β1-adrenoceptors impairs PFC func-
tion.78 Therefore, systemic or local application of the
β1-antagonist betaxolol improved working memory in rats
and monkeys. However, this treatment appeared to be asso-
ciated with serious pancreatic side effects and thus may not
be appropriate for human use.

Summary
The PFC appears to thrive under conditions of moderate

catecholamine release, when norepinephrine α2A-receptor
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stimulation increases “signals” and optimal dopamine
D1-receptor stimulation decreases “noise.” In contrast,
PFC working memory functions are impaired under condi-
tions of high catecholamine release that engage α1- and
β-receptors and excessive D1-receptor stimulation. These
neurochemical needs are opposite to those of posterior
cortical and subcortical structures.79 Therefore, catechola-
mines may act as a chemical switch, turning on PFC dur-
ing normal waking and turning it off during drowsiness or
stress. In contrast, high levels of catecholamines may turn
on more primitive brain structures such as the amygdala
for more automatic control of behavior under conditions of
danger.80

RELEVANCE TO ADHD MEDICATIONS

Drugs such as amphetamine and methylphenidate act to
enhance the release and/or inhibit the reuptake of both do-
pamine and norepinephrine. Methylphenidate can improve
PFC working memory function and enhance the efficiency
of PFC activation in healthy adult humans81,82 as well
as in patients with ADHD.83 Recent studies in rats show
that low oral doses of methylphenidate that produce
plasma drug levels similar to therapeutic doses in hu-
mans84 also improve PFC function.85 These enhancing
effects in rodents depend on dopamine D1- and norepi-
nephrine α2-receptor stimulation.85 It is likely that both do-
pamine and norepinephrine actions contribute to the thera-
peutic effects of stimulants in patients with ADHD. In
contrast, excessive doses of stimulant medication may
produce cognitive inflexibility through α1-, β-, and high
D1-receptor stimulation.

In summary, catecholamines have powerful influences
on the brain circuits that appear altered in ADHD. Medica-
tions that optimize catecholamine transmission may nor-
malize the function of these circuits and ameliorate ADHD
symptomatology.

Drug names: amphetamine (Adderall and others), betaxolol (Kerlone
and others), guanfacine (Tenex and others), methylphenidate (Ritalin,
Concerta, and others), prazosin (Minipress and others), pseudoephed-
rine (Sudafed, Efidac, and others).

Disclosure of off-label usage: The author has determined that, to
the best of her knowledge, guanfacine is not approved by the U.S.
Food and Drug Administration for the treatment of attention-deficit/
hyperactivity disorder, and prazosin is not approved for the treatment
of posttraumatic stress disorder.
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