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ABSTRACT
Background: Craving is associated with a high probability 
of relapse. However, the relationship between functional 
connectivity in the default mode network (DMN) during resting 
state and basal craving of heroin-dependent individuals 
remains unknown.

Methods: Data used in the present study were collected 
between August 10, 2009, and June 28, 2011. Twenty-four 
male heroin-dependent individuals based on DSM-IV criteria 
and 20 male healthy control subjects participated in a study of 
resting-state functional magnetic resonance imaging. The basal 
heroin craving of the heroin-dependent group was evaluated. 
The DMN networks were identified by group independent 
component analysis. The between-group difference in 
functional connectivity was analyzed, and the relationship 
between functional connectivity in the DMN and basal heroin 
craving in the heroin-dependent group was also analyzed.

Results: In all subjects, 2 spatially independent default mode 
subnetworks were identified: the anterior and posterior 
subnetworks. The anterior subnetwork, mainly the dorsal medial 
prefrontal cortex, showed decreased functional connectivity 
in the heroin-dependent group relative to the healthy control 
group (P < .05, familywise error corrected). However, the 
functional connectivity in dorsal medial prefrontal cortex was 
negatively correlated with the basal craving of the heroin group 
(P = .01, r = −0.50). No significant difference in the functional 
connectivity of the posterior subnetwork was found.

Conclusions: Our findings suggest that abnormal functional 
connectivity within the anterior subnetwork of DMN in heroin-
dependent individuals is associated with basal heroin craving, 
and it may serve as neural underpinnings for the mechanism of 
heroin addiction.
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Heroin addiction has become an increasingly serious 
problem in China in recent years.1,2 Such addiction is 

characterized by the failure to resist one’s impulses to seek and 
take drugs despite serious and negative consequences.3 Task-
related neuroimaging studies4–6 have shown an abnormal 
functional organization of brains in addicted populations, 
in which there is enhanced salience of drug-related cues but 
weakened strength of cognitive control. Drug-related cues-
induced7–11 or stress-induced12–14 craving is known to play a 
key role in relapse among drug addicts. On the other hand, 
basal heroin craving represents a baseline internal urge for 
heroin without influence from external stimuli. Given the 
neural-plastic adaptations as a result of long-term heroin 
exposure, the function of substrates associated with craving 
should be altered to some extent. However, the relationship 
between basal craving and basal functional connectivity of the 
brain without the influence of drug-related cues in heroin-
dependent individuals remains unknown.

The default mode network (DMN) has been identified 
during resting state.15 It mainly comprises brain regions 
including the medial prefrontal cortex (MPFC), anterior 
cingulate cortex (ACC), precuneus, posterior cingulate cortex 
(PCC), and medial, lateral, and inferior parietal cortex. 
This network is suggested to be involved in self-referential 
processes such as the processing of internal states15 and to 
be deactivated when engaging in various behavioral tasks or 
when responding to the environment.16 The brain regions 
(MPFC,9,16,17 ACC,7,9,12,17–22 and PCC20,23,24) within DMN are 
generally identified in different drug-cue response tasks. Also 
these regions have been identified in resting-state functional 
magnetic resonance imaging (fMRI) studies in heroin 
addiction.25–36 Specifically, Ma et al37 found that the heroin-
dependent individuals demonstrated decreased functional 
connectivity in dorsal anterior cingulate cortex and caudate in 
the DMN when compared with the healthy controls. Another 
study33 demonstrated decreased functional connectivity 
between the MPFC and PCC/precuneus in heroin-dependent 
individuals. Denier et al35 showed that, in heroin-dependent 
individuals, low gray matter volume is positively associated with 
low perfusion within frontal regions including regions of DMN. 
Wang et al34 found a decreased positive correlation between 
DMN and visual networks and a decreased negative correlation 
between DMN and task-positive networks. Therefore, the 
DMN is generally involved in heroin addiction. In addition, 
as an important part of DMN, the MPFC is suggested to be 
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involved in craving processes.17 The compulsion to use 
drugs is known to be frequently driven by craving. The 
exact relationship between functional connectivity in the 
DMN and basal craving for heroin remains unknown and 
is worthy of exploration. Examination of this relationship 
may be beneficial to the understanding of the intrinsic 
mechanism of heroin addiction from another perspective, 
that is, baseline characteristics.

The aim of our study was to assess the characteristics 
of functional connectivity in DMN during resting state in 
heroin-dependent individuals and to assess the relationship 
between the functional connectivity in the DMN and basal 
subjective heroin craving.

It has been demonstrated that the DMN could be 
decomposed into a spatially anterior subnetwork (eg, MPFC 
and anterior cingulate cortex) and posterior subnetwork (eg, 
PCC, precuneus, and bilateral inferior parietal lobe).38,39 
Given the suggestion that the anterior part of DMN is 
mostly involved in heroin addiction and craving processes 
during drug-cue response task,40,41 we hypothesized that the 
heroin-dependent individuals are characterized by decreased 
functional connectivity in DMN, especially the anterior part 
of DMN. Specifically, we hypothesized that the decreased 
functional connectivity could be negatively correlated with 
the basal subjective heroin craving.

METHODS

Participants
Data used in the present study were collected between 

August 10, 2009, and June 28, 2011. Forty-seven subjects 
participated in this study, including 27 heroin-dependent 
individuals (aged from 23 to 44 years, education from 6 to 
17 years) and 20 healthy control volunteers (aged from 19 
to 46 years, education from 6 to 14 years). All participants 
were male smokers. Subjects completed a clinical interview 
prior to inclusion in the study. Inclusion criteria for the 
heroin-dependent group were (1) DSM-IV criteria for heroin 
dependence for at least 1 year without use of any other opioid 
such as methadone and buprenorphine, (2) right-handed, 
(3) aged 18–50 years, (4) completion of detoxification 
treatment with no somatic symptoms of withdrawal, and 
(5) negative morphine urinalysis tests. Exclusion criteria for 
all participants were (1) current or past psychiatric illness 
other than heroin and nicotine dependence, (2) history of 
head trauma, (3) neurologic signs or history of neurologic 
disease, (4) current medical illness or recent medicine use, 

(5) presence of magnetically active objects in the body, and 
(6) claustrophobia or any other medical condition that 
would preclude the subject from undergoing MRI scan for 
approximately 40 minutes.

All aspects of the research protocol were reviewed and 
approved by the ethics committee of Tangdu Hospital, Xi’an, 
China, and comply with the Helsinki Declaration of 1975, 
as revised in 2008. Written informed consent was given by 
each subject. The experiment methods were carried out in 
accordance with the approved guidelines.

Experimental Paradigm
Participants underwent a resting-state fMRI scan. Prior 

to the scan, the basal heroin craving was assessed by a 0–10 
visual analog scale11 from each heroin-dependent individual. 
The question, “To what extent do you feel the urge to use 
heroin?” was asked to get heroin craving ratings (0 for the 
least craving and 10 for the strongest craving).

MRI Data Acquisition
Scanning took place on the 3.0T GE Signa Excite HD 

scanner (GE Healthcare) at Tangdu Hospital. Prior to formal 
experimental scanning, subjects underwent “mock scans” 
for 1 minute in order to become familiar with the scanning 
environment. The formal scanning began with a 10-second 
dummy scan followed by the data acquisition. During the 
formal scanning, each subject was instructed to keep still, 
rest with his eyes passively viewing the white cross hair 
with black background projected in the center of the mirror 
mounted on the head coil, and refrain from thinking about 
anything special. Ear plugs and foam padding were used to 
reduce noise and minimize head movement. The functional 
images were collected using a gradient echo planar imaging 
sequence (repetition time = 2,000 milliseconds, echo 
time = 30 milliseconds, field of view = 256 × 256 mm2, imaging 
matrix = 64 × 64, number of slices = 32, slice thickness = 4 
mm, gap = 0 mm, flip angle = 90°, spatial resolution = 4 × 4 × 4 
mm3). For each subject, 150 echo planar volumes were 
collected respectively during the resting-state fMRI scan. The 
total acquisition duration lasted for 5 minutes 10 seconds. 
The corresponding high-resolution 3D, T1-weighted images 
were also collected for use for spatial normalization of the 
data sets to a standard atlas. The fast spoiled gradient echo 
sequence was used (repetition time = 7.8 milliseconds, 
echo time = 3.0 milliseconds, field of view = 256 × 256 mm2, 
imaging matrix = 256 × 256, number of slices = 166, slice 
thickness = 1 mm, spatial resolution = 1 × 1 × 1 mm3). The 
structural data were checked by an experienced radiologist 
to identify whether there were structural abnormalities.

Data Preprocessing
The imaging data analysis was performed with SPM8 

software (http://www.fil.ion.ucl.ac.uk/spm) and Data 
Processing Assistant for Resting-State fMRI (DPARSF) 
software.42 The fMRI images were slice-time and motion 
corrected; registered to the fast spoiled gradient echo 3D, 
T1-weighted images; and then normalized to a standard 
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s ■■ The default mode network (DMN) is involved in cue-

induced craving in heroin-dependent patients. However, 
the relationship between function of DMN during resting 
state and basal craving for heroin remains unknown.

■■ For heroin-dependent patients, assessing resting-state 
functional connectivity in the anterior subnetwork of 
DMN prior to therapy initiation may help identify an 
indicator of relapse potential.

http://www.fil.ion.ucl.ac.uk/spm
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Table 1. Demographic and Clinical Characteristics of Subjects

Characteristic

Heroin Dependent
(n = 24),

Mean ± SD

Healthy Control
(n = 20),

Mean ± SD
t  

Value
P  

Value
Age, y 32.8 ± 6.6 35.0 ± 7.0 −1.142 .263
Education, y 10.9 ± 3.1 10.1 ± 2.3 0.984 .318
No. of cigarettes/d 17.8 ± 5.9 15.0 ± 5.0 1.820 .080
Duration of heroin use, mo 78.6 ± 50.1 … … …
Heroin dose, g/d 1.0 ± 1.2 … … …
Total heroin dose used, g 2,171.1 ± 2,484.9 … … …
Duration of abstinence, d 21.7 ± 16.0 … … …
 

SPM T1 template. The images were resampled to 3-mm 
isotropic voxels, and spatially smoothed (Gaussian 
filter of the 6-mm kernel). Participants with excessive 
head motion (more than 1.5 mm in translation or 1.5 
degree in rotation) were excluded from the analysis. 
Of the 47 subjects who completed the MRI scan, 3 
heroin-dependent subjects were excluded because of 
excess head motion. Therefore, data from 24 heroin-
dependent subjects and 20 healthy control subjects 
were included in the analyses (Table 1).

Group Independent Component Analysis
All the preprocessed imaging data were then 

analyzed with the GIFT software (http://icatb.
sourceforge.net/). Group independent component 
analysis was performed to decompose the resting-state 
imaging data into spatially independent components.

Although methods of how to choose the optimal 
number of components are in development, there 
is no consensus on it so far. We set the number of 
components at 20 based on recent resting-state 
fMRI studies.37,43,44 For each participant, 20 spatially 
independent components were identified using 
group independent component analysis. Then, DMN 
components were identified using a DMN template 
based on previous studies.44,45 We used the WFU 
PickAtlasTool (version 2.4; http://fmri.wfubmc.edu/
software/PickAtlas) to create the DMN template. The 
bilateral precuneus, posterior cingulate, angular, and 
superior medial frontal cortex were included in the 
template. A multiple regression was conducted in a 
voxelwise manner, and components (subnetworks) 
that best fit the DMN template were selected.46 The 
amplitude of each component reflects the contribution 
of each region to distributed and coherent activity 
within that component (ie, functional connectivity). 
Subsequently, subject-specific independent 
components were entered into second-level analyses. 
Voxelwise 1-sample t tests (P < .001, uncorrected) were 
employed to obtain the spatial pattern of the DMN 
in the 2 groups. Moreover, 2-sample t tests (P < .05, 
familywise error corrected) were performed to 
compare subject-specific DMN components between 
the 2 groups. Finally, we extracted the amplitude of 
the differential DMN regions between the 2 groups 
and calculated the correlations between functional 
connectivity strength and basal craving scores within 
the heroin-dependent group. The significance was 
set at P < .05. All coordinates reported were in the 
Montreal Neurological Institute space.

RESULTS

Demographic and Psychometric Characteristics
The heroin-dependent and healthy control groups 

did not show significant difference in age, years of 
education, and cigarettes smoked per day (Table 1). 

For the heroin-dependent group, the mean ± SD basal craving score 
was 2.5 ± 1.7 (range, 0.1–7.0).

Imaging
Two independent components had very close correlations with 

the DMN template, and their correlations were far above that of 
others (see Supplementary eTable 1). This result suggests that both 
of these subcomponent networks could be candidates for the DMN 
components. Moreover, both of these 2 subcomponent networks 
included only part of the DMN regions. When we combined these 
2 subcomponent networks, the new network was very similar 
to the DMN template. Given this situation, we decided to use 2 
subcomponent networks as some researchers have done.44,45 The 
2 subnetworks of the DMN were identified in participants as an 
anterior subnetwork and a posterior subnetwork. The anterior 
subnetwork had the highest intensity in MPFC, and the posterior 
subnetwork had the highest intensity in the PCC and bilateral 
precuneus. The 2 subnetworks were spatially independent from 
each other, and the time series were asynchronous in these 2 
subnetworks. The spatial patterns of the anterior and posterior 
subnetworks of the 2 groups are shown in Figures 1 and 2 (1-sample 
t test, P < .001). It can be seen that the 2 groups had similar 
expressions of the DMN subnetworks. 

Compared with the healthy control group, the heroin-
dependent group demonstrated significantly decreased functional 
connectivity in the dorsal MPFC (Brodmann area 9; peak t = −10.8; 
coordinates x = −3, y = 63, z = 30; number of voxels = 43), which was 
mainly involved in the anterior subnetwork of DMN (Figure 3). No 
significantly increased functional connectivity of the anterior DMN 
was found in the heroin-dependent group relative to the healthy 
control group. No significant difference in functional connectivity 
in posterior DMN between the 2 groups was found.

Correlation
For the heroin-dependent group, the functional connectivity 

in dorsal MPFC was negatively correlated with the basal craving 
(r = −0.50, P = .01) (Figure 4).

DISCUSSION

To our knowledge, this neuroimaging study is the first to 
assess the relationship between the characteristics of functional 
connectivity in DMN and basal craving in heroin addiction. As we 
hypothesized, the present findings demonstrated that the heroin-
dependent group was featured by decreased functional connectivity 
mainly in the dorsal MPFC within the anterior DMN, and the 

http://icatb.sourceforge.net/
http://icatb.sourceforge.net/
http://fmri.wfubmc.edu/software/PickAtlas
http://fmri.wfubmc.edu/software/PickAtlas
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functional connectivity in dorsal MPFC was negatively 
correlated with basal subjective craving for heroin.

The DMN is believed to be related to attention and 
self-referential and introspective thoughts and plays a key 
role in evaluating information from external and internal 
environment in the resting state.47 As an important part 
of the DMN, the MPFC integrates both emotional and 
cognitive information and functions as a mediator of 
frontolimbic circuit regulation.48,49 The dorsal MPFC has 
dense connectivity with a number of key regions involved 
in addiction such as the nucleus accumbens, amygdala, 

and monoaminergic brainstem nuclei. A growing body 
of literature points to the dorsal MPFC as a key structure 
involved in drug addiction. Drug cue reactivity studies19,20 
have consistently demonstrated that the dorsal MPFC is one 
of the brain regions that increases activation in response to 
drug-related cues. In addition, it was suggested that the 
cue reactivity in the dorsal MPFC is related to treatment 
outcome and risk of relapse.50 The preclinical studies of 
cocaine addiction also demonstrate that when the dorsal 
MPFC activity is dominated by cue response processes, 
decreased response of dorsal MPFC reduces cocaine seeking 

Figure 1. Spatial Map of the Anterior Subnetwork of the Default Mode Network in the Heroin-Dependent and Healthy Control 
Groupsa

aThe statistical parametric maps are based on 1-sample t tests against 0 at each voxel (P < .001, uncorrected).

The anterior subnetwork in the heroin-dependent group

The anterior subnetwork in the healthy control group

The anterior subnetwork in the heroin-dependent group

The anterior subnetwork in the healthy control group

Figure 2. Spatial Map of the Posterior Subnetwork of the Default Mode Network in the Heroin-Dependent and Healthy Control 
Groupsa

aThe statistical parametric maps are based upon 1-sample t tests against 0 at each voxel (P < .001, uncorrected).
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and relapse vulnerability,51–53 whereas increased response 
of dorsal MPFC enhances cocaine seeking and relapse 
vulnerability.54 An animal study by George et al55 suggested 
that the dysregulation of MPFC (including dorsal MPFC) 
interneurons may be an early index of neuroadaptation in 
alcohol dependence. Further, another animal study by Lu et 
al56 demonstrated that fMRI response in the MPFC (including 
dorsal MPFC) predicts cocaine self-administration history.

In our findings, the decreased resting-state functional 
connectivity in the anterior subnetwork of DMN mainly 
including dorsal MPFC in the heroin group relative to 
healthy group may suggest abnormal regulated awareness 
of internal state. The dorsal MPFC is densely innervated by 
dopaminergic fibers from the ventral tegmental area and 
substantia nigra,54 and it has high level of expression of 
dopamine transporters. Neuroimaging studies have showed 
that drug abusers are featured by significant decreases 
in dopamine D2 receptors and in dopamine release. This 
abnormal dopamine function is associated with reduced 
regional activity in prefrontal regions.57 Fox and colleagues58 
certificated that the human brain is intrinsically organized 
into dynamic and anticorrelated functional networks, 
such as cognitive control network and DMN. There is also 
evidence that dopamine facilitates the deactivation DMN 
during an emotion recognition task.59 Thus, conversely, 
the hypoactivity in the dorsal MPFC of heroin-dependent 
individuals during a resting state is consistent with a decrease 
in dopamine neurotransmission in heroin addiction.

Interestingly, the connectivity in the dorsal MPFC 
of the heroin group was negatively correlated with the 
subjects’ basal craving score for heroin. As dopamine cells 

fire in response to salient stimuli and facilitate conditioned 
learning, the activation by drugs will be experienced as highly 
salient, which results in driving motivation to take the drug 
and further strengthens conditioned learning and produces 
compulsive behaviors.57 Long-term repeated drug abuse 
decreases dopamine D2 receptors and dopamine release 
in the brain, and it may raise the thresholds required for 
dopamine cell activation and signaling, which in turn result 
in craving for drugs. On the basis of previous studies and 
our findings, we postulated that the decreased connectivity 
in the anterior subnetwork of DMN during a resting state 
is associated with enhanced internal awareness in heroin-
dependent individuals. Their increased awareness of internal 
states could result in greater craving response to stress or 
heroin-related cues and, in turn, increase the risk for relapse.

Our findings showing that the DMN decomposed into 2 
independent subnetworks support previous studies38,44 that 
have reported heterogeneity of the DMN. We did not find 
the difference in functional connectivity within the posterior 
subnetwork of DMN between the heroin-dependent and 
healthy control groups. In this regard, our result is in line 
with what Ma and colleagues37 found. We speculate that the 
dysfunction of the anterior subnetwork of DMN may play 
a more important role in underpinning the mechanism of 
heroin addiction.

The current findings suggest that future therapies for 
heroin addiction should assess basal functional connectivity 
in the anterior subnetwork of DMN prior to treatment as an 
indicator of relapse potential. Furthermore, changes in basal 
functional connectivity in the DMN after treatment might 
serve as a marker of treatment efficacy. Therapies for heroin 
addiction that would increase the functional connectivity in 
the anterior subnetwork of DMN would presumably reduce 
the rate of relapse.

Our data should be interpreted in light of some 
limitations. First, this study is restricted to men because of 
the reality of few heroin-dependent women in the district 
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Figure 4. Correlation Map Between Functional Connectivity 
of the Medial Prefrontal Cortex and the Baseline Craving of 
Heroin-Dependent Individuals

Abbreviation: MPFC = medial prefrontal cortex.
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Figure 3. Difference in Functional Connectivity Within the 
Anterior Subnetwork of Default Mode Network Between 
Heroin Group and Healthy Control Groupa

aP < .05, familywise error corrected.
Abbreviation: MPFC = medial prefrontal cortex.
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where we enrolled the subjects. Therefore, whether our 
findings generalize to addicted female subjects awaits 
further investigation. Second, although all of the participants 
denied falling asleep during the MRI scan, the inability to 
control subjects’ thoughts during imaging was a limitation 
common in resting-state fMRI studies. Third, although all 
of the subjects were recruited based on strict inclusion and 
exclusion criteria and there was no difference in cigarettes 
smoked per day between the heroin-dependent and healthy 

control groups, we could not rule out the confounding effects 
of use of other drugs besides heroin.

To summarize, we found that heroin-dependent 
individuals demonstrated decreased functional connectivity 
within the anterior subnetwork of DMN, and the disrupted 
connectivity in this subnetwork was associated with the 
basal heroin craving. The abnormal functional connectivity 
in the anterior subnetwork of DMN may serve as neural 
underpinnings for the mechanism of heroin addiction.
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Supplementary table 1. The correlation coefficient between the components and the default mode network 

template  

Order Heroin-dependent 
group 

Healthy control 
group 

1 0.548 0.489 
2 0.357 0.432 
3 0.192 0.218 
4 0.175 0.129 
5 0.106 0.078 
6 0.086 0.070 
7 0.071 0.057 
8 0.067 0.037 
9 0.050 0.033 
10 0.032 0.031 
11 0.031 0.023 
12 0.027 0.022 
13 0.024 0.020 
14 0.023 0.010 
15 0.016 0.005 
16 0.014 0.004 
17 0.007 0.003 
18 0.002 0.002 
19 0.002 0.001 
20 0.001 0.001 
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