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anic depressive illness is a common, severe,
chronic, and often life-threatening illness.1 Sui-
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Although mood disorders have traditionally been conceptualized as “neurochemical disorders,” considerable litera-
ture from a variety of sources demonstrates significant reductions in regional central nervous system (CNS) volume
and cell numbers (both neurons and glia) in persons with mood disorders. It is noteworthy that recent advances in cel-
lular and molecular biology have resulted in the identification of 2 novel, hitherto completely unexpected targets of
lithium’s actions, discoveries that may have a major impact on the future use of this unique cation in biology and medi-
cine. Chronic lithium treatment has been demonstrated to markedly increase the levels of the major neuroprotective
protein bcl-2 in rat frontal cortex, hippocampus, and striatum. Similar lithium-induced increases in bcl-2 are also ob-
served in cells of human neuronal origin and are observed in rat frontal cortex at lithium levels as low as ~0.3 mM.
Bcl-2 is widely regarded as a major neuroprotective protein, and genetic strategies that increase bcl-2 levels have dem-
onstrated not only robust protection of neurons against diverse insults, but have also demonstrated an increase in the
regeneration of mammalian CNS axons. Lithium has also been demonstrated to inhibit glycogen synthase kinase 3β
(GSK-3β), an enzyme known to regulate the levels of phosphorylated tau and β-catenin (both of which may play a role
in the neurodegeneration observed in certain forms of Alzheimer’s disease). Consistent with the increases in bcl-2 lev-
els and inhibition of GSK-3β, lithium has been demonstrated to exert robust protective effects against diverse insults
both in vitro and in vivo. These findings suggest that lithium may exert some of its long-term beneficial effects in the
treatment of mood disorders via underappreciated neurotrophic and neuroprotective effects. To date, lithium remains
the only medication demonstrated to markedly increase bcl-2 levels in several brain areas; in the absence of other
adequate treatments, an investigation of the potential efficacy of lithium in the long-term treatment of several neuro-
degenerative disorders is warranted. Additionally, we suggest that a reconceptualization of the use of lithium in mood
disorders may be warranted—namely, that the use of lithium as a neurotrophic/neuroprotective agent should be consid-
ered in the long-term treatment of mood disorders, irrespective of the “primary” treatment modality being used for the
condition. (J Clin Psychiatry 2000;61[suppl 9]:82–96)

M
cide is the cause of death in 10% to 20% of individuals
with manic depressive illness, and the risks of suicide
in manic depressive illness may be higher than those in
unipolar depression (reviewed in references 1 and 2). In

addition to suicide, major mood disorders are also associ-
ated with many other deleterious health-related effects,
and the costs associated with disability and premature
death represent an economic burden of tens of billions of
dollars annually in the United States alone.3,4 Despite well-
established genetic diatheses and extensive research, the
biochemical abnormalities underlying the predisposition
to and the pathophysiology of manic depressive illness re-
main to be clearly established. Although mood disorders
have traditionally been regarded as “good prognosis dis-
eases,” a growing body of data suggests that the long-term
outcome is often much less favorable than previously
thought. Indeed, according to the Global Burden of Dis-
ease Study, manic depressive illness is one of the leading
causes of disability worldwide (discussed in reference 5).
In this context, although mood disorders were classically
viewed as recurring conditions with essentially well peri-
ods between episodes, it has been increasingly recognized
that interepisode recovery is incomplete in many patients,
with a progressive decline in overall functioning.5
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ARE MOOD DISORDERS ASSOCIATED
WITH REGIONAL VOLUMETRIC BRAIN CHANGES?

In view of the deteriorating long-term clinical course
observed in many patients (vide supra), it is not surprising
that recent studies have been investigating potential struc-
tural brain changes in mood disorders. In this context, it is
noteworthy that although mood disorders have tradition-
ally been conceptualized as “neurochemical disorders,”
considerable literature from a variety of sources demon-
strates that mood disorders are also associated with signifi-
cant reductions in regional central nervous system (CNS)
volume and cell numbers (both neurons and glia). One line
of evidence comes from structural imaging studies, which
have recently begun to provide important clues about the
neuroanatomical basis of mood disorders. Specifically,
volumetric neuroimaging studies have demonstrated an
enlargement of third and lateral ventricles in patients with
manic depressive illness, although the lateral ventricle en-
largement is not as consistently observed (see references
6–11 and references therein). Recent studies have also re-
ported reduced basal ganglia volume and temporal lobe
volume (including the hippocampus) in morphometric
neuroimaging studies of mood disorders (references 6–11
and references therein). Within the frontal lobe, volumet-
ric neuroimaging studies have also consistently shown re-
duced volumes in mood disorders. In particular, recent
volumetric magnetic resonance imaging (MRI) studies in
patients with familial bipolar and unipolar depression have
demonstrated reductions in the mean gray matter volume
of approximately 40% in the prefrontal cortex ventral to
the genu of the corpus callosum.12

Lending support to the structural neuroimaging litera-
ture are multiple functional brain-imaging studies that have
shown abnormalities in metabolic rate and blood flow
in the striatal, frontal, and temporal regions in mood disor-
ders (reviewed in references 8 and 11). In addition to the
accumulating neuroimaging evidence, several postmortem
brain studies are now providing direct evidence for reduc-
tions in regional CNS volume and cell number in mood
disorders. A recent study by Benes and coworkers13 com-
pared 4 brains of patients with manic depressive illness
who were age- and postmortem interval–matched to 11
normal controls. They showed that nonpyramidal neurons
were approximately 40% lower in CA2 of the hippocam-
pal formation in the subjects with manic depressive illness
compared with controls. Three recent postmortem studies
of the prefrontal cortex have demonstrated reduced CNS
volume and cell numbers in mood disorders. Rajkowska14

has used 3-dimensional cell counting and morphological
techniques to demonstrate decreased cortical and laminar
thickness in subjects with manic depressive illness who
completed suicide. Similar findings were also shown in a
separate group of suicide victims with major depression.
In an exciting recent study of several prefrontal cortical ar-

eas using similar methodologies, 12 subjects with major
depressive disorder (without psychosis) demonstrated sig-
nificantly reduced sizes and densities of both neurons and
glia in several distinct areas compared with 9 matched con-
trol subjects.15 Also in the prefrontal cortex, Ongur and
colleagues16 have recently reported a histologic study ex-
amining the cellular composition of area sg24 located in
the subgenual prefrontal cortex. They found striking reduc-
tions in glial cell numbers in patients with familial major
depression (24% reductions) and manic depressive illness
(41% reductions) compared with controls. This is a particu-
larly noteworthy finding because it is consistent with
neuroimaging findings that show cortical volume loss in
this same region on volumetric MRI in a similar diagnos-
tic group.12

Together, the preponderance of the data from the neuro-
imaging studies and the growing body of postmortem evi-
dence present a convincing case that there is indeed a
reduction in regional CNS volume, accompanied by a re-
duction in cell numbers in mood disorders. It remains to
be elucidated if these findings represent neurodevelop-
mental abnormalities, disease progression that fundamen-
tally involves loss/atrophy of glia and neurons, or the
sequelae of the biochemical changes (for example, in
glucocorticoid levels) accompanying repeated affective
episodes per se. In support of the latter, chronic stress or
glucocorticoid administration has been demonstrated to
produce atrophy or even death of vulnerable hippocampal
neurons in rodents and primates, and MRI studies have
also revealed reduced hippocampal volumes in patients
with Cushing disease and posttraumatic stress disorder
(discussed in references 10 and 17–19).

CAN DISEASE-RELATED CNS CELL DEATH
OR ATROPHY BE ATTENUATED OR REVERSED?

It is now well established that in the developing ner-
vous system, programmed cell death is responsible for the
intricate matching of neurons to their targets and, as such,
represents a tightly regulated set of cellular responses to
both extrinsic and intrinsic signals. The dependence of
neuronal survival on specific “survival factors” and ge-
netic programs represents an intricate and elegant scheme
by which much of the establishment, molding, and refin-
ing of neuronal circuitry occurs physiologically. A grow-
ing body of data, however, has shown that many of the
same pathways may also be involved in the cell death and
atrophy that occurs pathologically in certain disorders. In
recent years, considerable progress has been made in our
understanding of the factors that regulate cell death and
atrophy, as well as the mechanisms by which these
changes occur. With the realization that these changes may
arise from aberrantly activated gene-directed processes,
and/or the absence of critical trophic signals, the loss or
atrophy of large numbers of cells in the CNS no longer has
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to be accepted as an unavoidable fate. This is particularly
noteworthy since investigators at the Salk Institute have
recently demonstrated that neurogenesis also occurs in the
adult human brain,20,21 and complementary studies have
similarly demonstrated neurogenesis in the dentate gyrus
of mature marmosets and macaques.22 Most recently,
Gould and colleagues23 have demonstrated the presence of
newborn neurons in the neocortex as well.

Besides overturning the earlier dogma that the adult
human brain is incapable of cell division, this exciting
work opens an avenue for therapeutic intervention that
would take advantage of the replicative capacity of these
neurons. Although further research is necessary to demon-
strate that the new neurons are indeed capable of joining
existing functional networks in the brain, the possibility
of regulating neurogenesis in the human brain to correct
disease-related pathophysiologic changes is a very excit-
ing prospect indeed.21,23 Elegant recent studies have
greatly enhanced our understanding of the genetic and en-
vironmental factors regulating neurogenesis in the adult
mammalian brain, leading to the exciting prospect that
it may even be possible to pharmacologically regulate
neurogenesis in the adult mammalian brain.18,21,24,25

LITHIUM: A UNIQUE CATION
IN BIOLOGY AND MEDICINE

Lithium is an element discovered over 175 years ago
(1817), but it was not until the seminal work of the Austra-
lian physician/scientist John Cade 50 years ago, and sub-
sequent clinical studies by Mogens Schou, that lithium
was seen by modern psychiatry as an effective treatment
for manic depressive illness.26,27 The discovery of
lithium’s efficacy as a mood-stabilizing agent revolution-
ized the treatment of patients with manic depressive ill-
ness—indeed, it is likely that the remarkable efficacy of
lithium served to spark a revolution that has reshaped not
only medical and scientific, but also popular concepts of
severe mental illnesses.28 After 3 decades of use in North
America, lithium continues to be the mainstay of treat-
ment for this illness, both for the acute manic phase and as
prophylaxis for recurrent manic and depressive epi-
sodes.1,27 Adequate lithium treatment, particularly in the
context of a lithium clinic, is also reported to reduce the
excessive mortality observed in the illness.26,29–33 The ef-
fect on the broader community is highlighted by one esti-
mation that the use of lithium saved the United States $4
billion in the period 1969 to 1979 by reducing associated
medical costs and restoring productivity.34 However, de-
spite its role as one of psychiatry’s most important treat-
ments, the biochemical basis for the therapeutic effects of
lithium remains to be fully elucidated.35–38 Lithium has a
variety of benefits in the treatment of mood disorders, in-
cluding acute antimanic and antidepressant effects, antide-
pressant-potentiating effects, long-term prophylactic ef-

fects, and perhaps even independent antisuicidal effects
(reviewed in references 1 and 33). It is unlikely that any
single biochemical effect mediates all of lithium’s clinical
effects. In this context, considerable research has identi-
fied transmembrane cellular signaling pathways, in par-
ticular the protein kinase C signal transduction pathway,
as therapeutically relevant targets for many of lithium’s
effects37,39–48 (Figure 1). It is, however, intriguing that 50
years after John Cade’s original report, advances in cel-
lular and molecular biology have led to the identification
of 2 novel, hitherto completely unexpected targets of
lithium’s actions, discoveries that may have a major im-
pact on the future use of this unique cation in biology and
medicine. Here we discuss the recent data demonstrating
that lithium exerts major effects on the cytoprotective
protein bcl-2 as well as on glycogen synthase kinase 3β
(GSK-3β); these effects may be responsible, at least in
part, for the growing body of data demonstrating that lith-
ium exerts neuroprotective effects both in vitro and in vivo
(Figure 2). It should be emphasized that it is not our con-

Figure 1. Molecular Mechanisms of Lithium’s Actiona

aAdapted with permission from Ikonomov and Manji.49 Abbreviations:
DAG = diacylglycerol, G = G protein, GSK = glycogen synthase
kinase, IMPase = inositol monophosphatase, IP3 = inositol
1,4,5-trisphosphate, myo-I = myo-inositol, P = phosphate,
PI = phosphoinositide, PIP2 = phosphatidylinositol 4,5-bisphosphate,
PKC = protein kinase C, PLC = phospholipase C, R = receptor.

At therapeutic concentrations lithium directly inhibits 2 enzymes:
GSK-3β and IMP. (A) In early Xenopus development, GSK-3β is in
a cytosolic complex with other proteins: axin and β-catenin. β-Catenin
is a transcription factor and the effector protein of the Wnt signaling
pathway, which also involves extracellular ligands (encoded by
Wnt gene family, not shown), Wnt membrane receptors (encoded by
Frizzled gene family), and disheveled proteins. The Wnt signaling
activation leads to a nuclear translocation of β-catenin, activation of
c-jun, and dorsalization of the embryo. Short lithium exposure blocks
the tonic inhibitory action of GSK-3β and activates the Wnt signaling
pathway, an effect that could be imitated by a dominant negative
GSK-3β mutant. (B) In the rodent brain, lithium inhibits
inositol-1-phosphatase, thereby bringing about secondary changes
in the PKC signaling cascade. Increased intracellular Ca2+ and PKC
activate the transcription of immediate-early genes including the fos
and jun family. Multiple late-response genes are known to be
significantly affected by lithium treatment.
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tention that lithium’s effects on bcl-2 and GSK-3β are re-
sponsible for all of lithium’s therapeutic effects, but rather
that these biochemical effects may play a major role in
long-term neurotrophic/neuroprotective effects. Together
with the exciting data demonstrating effects of antidepres-
sants on neurotrophic factors,51–53 these findings suggest
that a reconceptualization of the cellular mechanisms un-
derlying some of the long-term beneficial effects of lith-
ium and antidepressants may be warranted.37,50,53–57

LITHIUM, SIGNAL TRANSDUCTION,
AND GENE EXPRESSION

It has become increasingly appreciated in recent years
that the long-term treatment of complex neuropsychiatric
disorders such as manic depressive illness most likely in-
volves the strategic regulation of signaling pathways and
gene expression in critical neuronal circuits.35,37,38,44,49,53,58

Effects of lithium on signal transduction pathways, in par-
ticular the protein kinase C signaling pathway, quite likely
play a major role in the treatment of affective epi-
sodes.35,37,39,42–48,59 In recent years, substantial progress has

also been made in our understanding of the processes that
convert short-term (sometimes very transient) second
messenger–mediated events into long-term neuronal and
physiologic phenotypic alterations. These advances have
been particularly important for neurobiology, wherein we
attempt to understand the mechanism(s) by which short-
lived events (e.g., stressors) can have profound, long-term
(perhaps lifelong) behavioral consequences and, impor-
tantly for the present discussion, help to unravel the pro-
cesses by which a simple monovalent cation such as lith-
ium may produce a long-term stabilization of mood in
individuals vulnerable to an illness as complex as manic
depressive illness.8,60

Effects of Lithium on Immediate-Early Genes
The transcriptional activation of immediate-early genes,

including the fos and jun families, is a characteristic cellu-
lar response to extracellular stimuli such as hormones,
growth factors, and neurotransmitters.61,62 The transcrip-
tional activation is followed by cytoplasmic translation of
Fos, Jun, and other proteins, which translocate into the
nucleus and form a variety of protein complexes. Activa-
tor protein 1 (AP-1) is a collection of homodimeric and
heterodimeric complexes composed of products of fos and
jun family members. These products bind to a common
DNA site (12-O-tetradecanoylphorbol-13-acetate [TPA]
response element [TRE]) in the regulatory domain of the
gene and activate gene transcription. The genes regulated
by AP-1 in CNS include genes for various neuropeptides,
neurotrophins, receptors, transcription factors, enzymes in-
volved in neurotransmitter synthesis, and proteins that bind
to cytoskeletal elements.62 The final result of this molecu-
lar cascade is alteration in the transcription of selected tar-
get genes bearing the specific DNA binding site on their
regulatory regions.

Several independent laboratories have now demon-
strated that lithium, at therapeutically relevant concentra-
tions, produces complex alterations in basal and stim-
ulated DNA binding of TRE to AP-1 transcription factors
not only in human SH-SY5Y cells in vitro, but also in
rodent brain after chronic, in vivo administration.38,63–67

Paralleling an increase in basal AP-1 DNA binding ac-
tivity, lithium has been shown to time- and concentration-
dependently increase the expression of a luciferase re-
porter gene driven by an SV40 promoter that contains
TREs; mutations in the TRE sites of the reporter gene
promoter markedly attenuate the effects of lithium.66,68 Im-
portantly, lithium has also been demonstrated to increase
the expression of endogenous proteins whose genes are
known to be regulated by AP-169–71; together, these results
suggest that lithium may regulate gene expression (at least
in part) through the AP-1 transcription factor path-
way.38,39,65–67 As discussed above, many of the genes
known to be regulated by the AP-1 family of transcription
factors in the brain include genes for various neuropep-

Figure 2. Molecular and Cellular Mechanisms Underlying the
Neuroprotective Effects of Lithiuma

aAdapted with permission from Manji et al.50

Abbreviations: AP = activator protein, bcl-2 = B-cell lymphoma/
leukemia-2 gene, GSK = glycogen synthase kinase,
P = phosphate, PEBP = polyomavirus enhancer binding protein.

Chronic lithium, at therapeutically relevant concentrations, increases
the expression and function of the transcription factor PEBP2β, which
results in a robust up-regulation of the major neuroprotective protein
bcl-2 in the central nervous system. Lithium is also an inhibitor of
GSK-3β. GSK-3β is known to phosphorylate tau, a major component
of neurofibrillary tangles. It should be emphasized that GSK-3β is
only one of the kinases involved in phosphorylating tau. Nevertheless,
inhibition of GSK-3β by lithium may reduce levels of
hyperphosphorylated tau. GSK-3β also regulates β-catenin levels, and
inhibition of GSK-3β by lithium results in a stabilization of β-catenin.
The lithium-induced stabilization of β-catenin may serve to offset the
destabilizing effects of interactions of mutant presenilin-1 protein,
thereby reducing neuronal vulnerability to apoptosis induced by
amyloid-β protein.
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tides, neurotrophins, receptors, transcription factors, en-
zymes involved in neurotransmitter biosynthesis, and pro-
teins that bind to cytoskeletal elements.62 Together, these
data suggest that lithium, via its effects on the AP-1 family
of transcription factors, may bring about strategic changes
in gene expression in critical neuronal circuits, effects that
may ultimately underlie its efficacy in the treatment of a
very complex neuropsychiatric disorder.35,38,49,58,65,67,72

SUCCESSFUL APPLICATION OF A
CONCERTED mRNA DIFFERENTIAL DISPLAY

STRATEGY TO IDENTIFY NOVEL TARGET GENES

Bcl-2 as a Therapeutically Relevant Target
for the Actions of Lithium

It is now clear that lithium, very likely via its effects on
mitogen-activated protein (MAP) kinases73 and GSK-3β
(vide infra), exerts major effects on the AP-1 family of
transcription factors (reviewed in references 37, 38, 54,
72, and 74), effects that have the potential to regulate the
expression of a number of critical genes in the CNS. Al-
though many genes that are the targets of long-term lith-
ium treatment have indeed been identified, it has been
estimated that approximately 10,000 to 15,000 genes may
be expressed in a given cell at any time, and thus addi-
tional, novel methodologies are clearly required to study
the complex pattern of gene-expression changes induced
by chronic drug treatment.37,49,53,54,56

In recent years, new methodologies have evolved to
identify the differential expression of multiple genes (e.g.,
in pathologic vs. normal tissue, or in control vs. treated tis-
sue); one such methodology that is being increasingly uti-
lized is reverse transcription polymerase chain reaction
mRNA differential display (RT-PCR DD).75 Using this
method, Wang and Young76 were the first to make the novel
observation that lithium increased 2',3'-cyclic nucleotide
3'-phosphodiesterase mRNA levels in C6 glioma cells. A
major problem inherent in neuropharmacologic research,
however, is the dearth of phenotypic changes clearly asso-
ciated with treatment response, particularly for mood-
stabilizing agents.39,49 In the absence of suitable animal
models, we have attempted to overcome this experimental
hurdle by utilizing paradigms that involve the identifica-
tion of common long-term molecular targets of structurally
dissimilar mood-stabilizing agents when administered
chronically in vivo. Thus, to identify changes in gene ex-
pression likely to be associated with components of the
therapeutic efficacy of mood stabilizers, we have utilized
RT-PCR DD to concurrently investigate the effects of lith-
ium and valproate in the CNS, following chronic treatment
of rodents in vivo.77 These are 2 structurally highly dissimi-
lar agents; although they most likely do not exert their
therapeutic effects by precisely the same mechanisms,
identifying the genes that are regulated in concert by these
2 agents, when administered in a therapeutically relevant

paradigm, may provide important leads about the molecu-
lar mechanisms underlying mood stabilization. Inbred
male Wistar Kyoto rats (selected to reduce potential false
positives due to individual differences) were treated
chronically with twice-daily intraperitoneal injections of
lithium, valproate, or saline. Saline was provided ad libi-
tum to the lithium-treated rats to reduce potential toxicity.
The animals attained plasma drug concentrations similar
to those attained clinically,77 and no significant weight
changes were observed with the chronic drug treatment.
RNA was extracted from frontal cortices to study gene ex-
pression using RT-PCR DD.75 One of the genes whose ex-
pression was markedly increased by the treatments is the
transcription factor polyoma enhancer binding protein 2β
(PEBP2β; GenBank Accession Number: AF087437, dis-
cussed in reference 77). After demonstrating that the func-
tion of PEBP2β (DNA binding of the PEBP2αβ complex)
was also clearly increased by chronic lithium admini-
stration, we next investigated the effects of lithium on
the levels of a critical protein known to be regulated by
PEBP2β—the major neuroprotective protein bcl-278—and
found that chronic treatment of rats with lithium resulted
in a doubling of bcl-2 levels in frontal cortices.

Additional studies were subsequently undertaken to fur-
ther localize lithium’s effects on CNS bcl-2 levels. In these
studies, inbred male Wistar rats were once again used. The
mean ± SD plasma lithium levels were 0.7 ± 0.3 mM, and
no significant weight changes were observed with 4 weeks
of treatment. Immunohistochemical studies showed that
chronic treatment of rats with lithium resulted in a marked
increase in the number of bcl-2 immunoreactive cells in
layers II and III of frontal cortices. Interestingly, the im-
portance of neurons in layers II through IV of the frontal
cortices in mood disorders has recently been emphasized,
since primate studies have indicated that these are impor-
tant sites for connections with other cortical regions and
major targets for subcortical input (discussed in reference
15). Chronic administration of lithium at therapeutically
relevant concentrations also resulted in a marked increase
in the number of bcl-2 immunoreactive cells in the dentate
gyrus and striatum (Figure 3).50 To determine if lithium
also increases bcl-2 levels in human cells of neuronal ori-
gin, human neuroblastoma SH-SY5Y cells were treated
with 1.0 mM of lithium for 6 days. Similar to the situation
observed in rat brain in vivo, chronic lithium admini-
stration produced a marked increase in bcl-2 levels in
SH-SY5Y cells (Figure 4). We have subsequently demon-
strated that lithium also increases bcl-2 levels in C57BL/6
mice (G. Chen, M.D., Ph.D.; F. Du, Ph.D.; H.K.M., manu-
script submitted), and our demonstration of a lithium-
induced increase in bcl-2 levels has also been convincingly
replicated in rat cerebellar granule cells in a recent study.79

This latter study was undertaken to investigate the molecu-
lar and cellular mechanisms underlying the neuroprotec-
tive actions of lithium against glutamate excitotoxicity
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Figure 3. Effects of Chronic Lithium on the Immunolabeling of Bcl-2 in Rat Braina

aAdapted with permission from Manji et al.50 Inbred male Wistar Kyoto rats were treated with either Li2CO3 or saline by twice-daily i.p. injections
for 4 weeks. There was no significant weight loss observed with chronic lithium administration. Trunk blood was collected for determination of
lithium levels (mean ± SD = 0.7 ± 0.3 mM). The rats’ brains were cut at 30 µm; serial sections were cut coronally through the anterior portion of the
brain, mounted on gelatin-coated glass slides, and stained with thionin. The sections of the second and third sets were incubated free-floating for 3
days at 4°C in 0.01 M phosphate buffered saline containing a polyclonal antibody against bcl-2 (N-19, 1:3000, Santa Cruz Biotechnology, Santa
Cruz, Calif.), 1% normal goat serum, and 0.3% Triton X-100 (Sigma, St. Louis, Mo.). Subsequently, the immunoreaction product was visualized
according to the avidin-biotin complex method. The figure shows immunohistochemical labeling of bcl-2 in saline- (A, C, and E) and lithium- (B, D,
and F) treated rats, in layers 2 and 3 of frontal cortex (A and B), hippocampus (C and D), and striatum (E and F). Main photographs were obtained
with 40× magnification; insets with 10× magnification.
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(vide infra). These investigators found that lithium pro-
duced a remarkable increase in bcl-2 protein and mRNA
levels. Moreover, lithium has very recently been demon-
strated to reduce the levels of the pro-apoptotic protein p53
both in cerebellar granule cells79 and SH-SY5Y cells.80

Thus, overall, the data clearly show that chronic lithium
administration robustly increases the levels of the neuro-
protective protein bcl-2 in areas of rodent frontal cortices,
hippocampus, and striatum in vivo and in cultured cells of
both rodent and human neuronal origin in vitro. Further-
more, at least in cultured cell systems, lithium has also
been demonstrated to reduce the levels of the pro-
apoptotic protein p53.

Bcl-2, Mediator of Cellular Life and Death:
Clinical Implications of the Lithium-Induced Increases

Extensive research efforts aimed at elucidating the sig-
naling pathways and proteins involved in regulating
physiologic and pathophysiologic cell death have revealed
critical roles for mammalian proteins that show consider-
able homology to the “C. elegans death proteins”—the
bcl-2 family of proteins. Bcl-2 is the acronym for B-cell
lymphoma/leukemia-2; the gene for this protein was first
discovered because of its involvement in B-cell malignan-
cies, where chromosomal translocations activate the gene
in the majority of follicular non-Hodgkin B-cell lympho-
mas (references 81–85 and references therein). Bcl-2 was
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the first identified member of a large family of cellular and
viral apoptosis-regulating proteins (reviewed in references
82–85). These proteins appear to regulate common path-
ways for apoptosis and programmed cell death, with sev-
eral functioning as “protectors” (e.g., bcl-2, bcl-XL) and
others as “executioners” (e.g., Bax, Bak, Bad). In a num-
ber of cases, these proteins interact with each other in a
complex network of homodimers and heterodimers (refer-
ences 81–85 and references therein).

Bcl-2 is expressed in the rodent and mammalian nervous
system and is localized to the outer mitochondrial mem-
brane, endoplasmic reticulum, and nuclear membrane. Al-
though the precise mechanisms of action of bcl-2 are un-
known, it is now clear that bcl-2 is a protein that inhibits
both apoptotic and necrotic cell death induced by diverse
stimuli (references 81–83 and references therein). It is
likely that several cellular mechanisms are involved in
mediating the protective effects of bcl-2, including se-
questering the proforms of caspases, inhibiting the effects
of caspase activation, providing antioxidant effects, en-
hancing mitochondrial calcium uptake, and attenuating

the release of calcium and cytochrome c from mitochon-
dria (reviewed in references 82–85; Table 1).

A role for bcl-2 in protecting neurons from cell death is
now supported by abundant evidence; thus, bcl-2 has been
shown to protect neurons from a variety of insults in vitro
including growth-factor deprivation, glucocorticoids, ion-
izing radiation, and oxidant stressors such as hydrogen
peroxide, tert-butylhydroperoxide, reactive oxygen spe-
cies, and buthionine sulfoxamine.82,83 In addition to these
potent in vitro effects, bcl-2 has also been shown to pre-
vent cell death in numerous studies in vivo. In the absence
of pharmacologic means of increasing CNS bcl-2 expres-
sion (until now), all the studies have hitherto utilized
transgenic mouse models or viral vector-mediated delivery
of the bcl-2 gene into the CNS. In these models, bcl-2
overexpression has been shown to prevent motor neuron
death induced by facial nerve axotomy and sciatic nerve
axotomy, to save retinal ganglion cells from axotomy-
induced death, to protect cells from the deleterious effects
of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
or focal ischemia, and to protect photoreceptor cells from
2 forms of inherited retinal degeneration. Interestingly,
neurons that survive ischemic lesions or traumatic brain
injury in vivo show up-regulation of bcl-2 (references 81,
84, 86–90 and references therein). Overexpression of bcl-2
has also recently been shown to prolong survival and at-
tenuate motor neuron degeneration in a transgenic animal
model of amyotrophic lateral sclerosis91 (Table 2).

Most recently, it has been clearly demonstrated that not
only does bcl-2 overexpression protect against apoptotic
and necrotic cell death, it can also promote regeneration of
axons in the mammalian CNS, leading to the intriguing
postulate that bcl-2 acts as a major regulatory switch for a
genetic program that controls the growth of CNS axons.88

Since bcl-2 has also recently been shown to promote neu-
rite sprouting, it has been convincingly argued that in-
creasing CNS bcl-2 levels may represent a very effective
therapeutic strategy for the treatment of many neuro-
degenerative diseases.88 As articulated already, the only

Table 1. Mechanisms Underlying the Neuroprotective Effects
of Bcl-2a

Blocks cytochrome c release from mitochondria
Acts as an antioxidant or reduces free-radical production
Regulates calcium homeostasis
Regulates other gene products that promote apoptosis, eg, forms

heterodimers with the pro-apoptotic protein Bax
Inhibits effects of cysteine protease activation
Maintains the mitochondrial membrane potential and prevents

activation of the mitochondrial permeability transition
Detoxifies or decreases the production of reactive oxygen species
Causes a redistribution of glutathione to the nucleus
Enhances the mitochondrial membrane potential and improves

ATP/ADP ratios
Enhances the mitochondrial calcium uptake potential of neural cells
Inhibits mitochondrial release of calcium
aData summarized from Merry and Korsmeyer,81 Adams and Cory,82

Bruckheimer et al.,83 Sadoul,84 and Li and Yuan.85

Figure 4. Effects of Lithium on Bcl-2 Levels in Human
Neuroblastoma SH-SY5Y Cellsa

aHuman SH-SY5Y neuroblastoma cells were incubated with lithium
(1 mM) for 3 days or 6 days in inositol-free minimal essential medium
(MEM). Immunoblotting was conducted using established methods
with monoclonal antibodies against bcl-2 (1 in 100 dilution; Santa
Cruz Biotechnology, N-19, Santa Cruz, Calif.) Incubation of SH-SY5Y
cells with lithium for 6 days (but not 3 days) resulted in significant
increases in the levels of bcl-2.
*p < .05 compared with control.
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means of therapeutically increasing CNS bcl-2 levels in
the adult brain has heretofore been by the use of complex
gene transfer methodologies; thus, pharmacologic means
of robustly increasing CNS bcl-2 levels represent a major
advance for the long-term treatment of certain neurodegen-
erative disorders.

GSK-3β: Another Novel Cellular Target
for the Actions of Lithium

In recent years, another hitherto unexpected target for the
effects of lithium has been identified. Klein and Melton92

were the first to make the seminal observation that lithium’s
effects on the dorsalization of the Xenopus embryo had at-
tributes that suggested the activation of another evolution-
arily conserved signal-transduction pathway—the Wnt (se-
creted extracellular ligands) signaling pathway (see Figure
1). They further showed that the selective inhibition of in-
ositol monophosphatase (IMPase) with other agents did not
mimic lithium’s effects in Xenopus, leading to their studies
demonstrating that lithium, at therapeutically relevant con-
centrations, is an inhibitor of GSK-3β.92 Glycogen synthase
kinase (GSK-3) is an evolutionarily highly conserved ki-
nase, known to play a key role in regulating developmental
patterns in diverse organisms (including mammals), as well
as regulating important neuronal functions.93–96 During nor-
mal development, GSK-3β (zeste-white3/shaggy) inhibits
the transduction of the Wnt signal from the Wnt membrane
receptors (encoded by Frizzled protein family) to the
nucleus. Other important intracellular molecules in Wnt sig-
naling are disheveled, axin, β-catenin, and possibly other
yet unidentified interacting proteins.93–97 Exposure to lith-
ium leads to a nuclear translocation of β-catenin (a final

result of Wnt signaling activation) and duplication of the
dorsal embryonic axis.92,98 Most pertinent for the present
discussion, it is now known that GSK-3β plays a critical
role in the CNS, by regulating various cytoskeletal pro-
cesses via its effects on tau and synapsin I, as well as long-
term nuclear events via phosphorylation of c-jun, nuclear
translocation of β-catenin, and nuclear export of NF-ATc
(reviewed in references 93–96). Thus, lithium’s inhibition
of GSK-3β may underlie some of its transcriptional and
posttranscriptional actions in the brain, and thereby poten-
tially some of its long-term therapeutic effects.54,96,99,100

As discussed above, lithium is known to bring about a
variety of biochemical effects, and in the absence of clear-
cut phenotypic changes associated with therapeutic re-
sponse,49 it is unclear if inhibition of GSK-3β represents a
therapeutically relevant effect. On the basis of similar clini-
cal efficacy of lithium and sodium valproate as antimanic
agents (and potentially as mood stabilizers) in manic de-
pressive illness, we investigated if valproate also regulates
GSK-3β, and found significant valproate-induced inhi-
bition of GSK-3β at therapeutically relevant concentra-
tions.101 Consistent with GSK-3β inhibition, incubation of
SH-SY5Y cells with valproate results in a significant time-
dependent increase in both cytosolic and nuclear β-catenin
levels.101 These data indicate that GSK-3β is a common tar-
get for both mood stabilizers and support its potential role
in the beneficial long-term action of lithium. Importantly
for the present discussion, GSK-3β is known to phospho-
rylate the immediate-early gene c-jun at 3 sites adjacent to
its DNA binding domain, thereby reducing AP-1 bind-
ing.74,102 Thus, the acute inhibition of GSK-3β by lithium
and valproate has the potential to bring about long-term
changes in the CNS via the transcriptional activity of both
β-catenin and AP-149 (see Figure 1). These original semi-
nal studies by Klein and Melton92 have resulted in a num-
ber of follow-up studies, and have generated considerable
excitement about the possibility of developing novel
GSK-3β modulators as potential new therapeutics for bi-
polar disorder.74,99

Unlike many protein kinases, GSK-3β is highly active
in resting cells and is primarily regulated by inactivation.
Several recent studies have found that inhibition of
GSK-3β by lithium reduces tau phosphorylation, an effect
that very likely occurs to some degree at therapeutically
relevant lithium concentrations (see reference 37 for an ex-
cellent discussion). Although many of the studies have uti-
lized lithium concentrations in excess of those utilized
therapeutically, the available data suggest that lithium, at
concentrations of ~1 mM does, indeed, reduce tau phos-
phorylation.37,103–105 For the purposes of the present dis-
cussion, it is noteworthy that the intracellular neurofibril-
lary tangles found in Alzheimer’s disease are composed
of straight and paired helical filaments that contain an
aberrantly hyperphosphorylated form of the microtubule-
associated protein tau. Hyperphosphorylation of tau is an

Table 2. Neuroprotection by Bcl-2a

Protects neuronal cells from the lethal effects of a variety of stimuli
that generate reactive oxygen species

Protects neuronal cells in culture from glutamatergic toxicity and
growth factor deprivation–induced cell death

Gene transfer of bcl-2 enhances survival of cultured neurons exposed
to glutamate and hypoglycemia and protects against focal ischemia
in the striatum

Transgenic mice overexpressing bcl-2 demonstrate protection against
axotomy-induced neonatal motor neuron death

Transgenic mice overexpressing bcl-2 demonstrate protection against
apoptotic cell death after traumatic brain injury

Transgenic mice overexpressing bcl-2 demonstrate reduced infarct
sizes after focal cerebral ischemia

Transgenic mice overexpressing bcl-2 crossed into a transgenic mouse
model of amyotrophic lateral sclerosis show enhanced survival

Transgenic mice overexpressing bcl-2 show marked resistance to
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity
and are protected against acute MPTP-induced dopamine depletion

Transgenic mice overexpressing bcl-2 show enhanced regeneration of
severed central nervous system axons, independent of the
antiapoptotic effects of bcl-2

aAdapted with permission from Manji et al.50 Summarized from
Merry and Korsmeyer,81 Adams and Cory,82 Bruckheimer et al.,83

Sadoul,84 Li and Yuan,85 Bonfanti et al.,86 Lawrence et al.,87

Chen et al.,88 Raghupathi et al.,89 Yang et al.,90 and Kostic et al.91
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early event in the course of Alzheimer’s disease and may
precede the disruption of the microtubule cytoskeleton.
Studies with transgenic mice have suggested that GSK-3β
may play an important role in tau phosphorylation; thus,
although GSK-3β is undoubtedly only one of several ki-
nases involved in the aberrant hyperphosphorylation, inhi-
bition of GSK-3β represents a potential mechanism to re-
duce the accumulation of hyperphosphorylated tau, which
is found in neurofibrillary tangles (see Figure 2).

As discussed, GSK-3β also plays a major role in reg-
ulating β-catenin levels; inhibition of GSK-3β results in
β-catenin accumulation, quite likely due to a decrease in
the rate of β-catenin protein degradation.93,94 In this con-
text, it is noteworthy that recent studies have shown that
presenilin-1 forms a complex with β-catenin in vivo, lead-
ing to an increase in β-catenin stability.106 Furthermore, mu-
tations in the presenilin-1 gene (which have been found in
many patients with a rare form of familial Alzheimer’s dis-
ease) have been shown to reduce the ability of presenilin-1
to stabilize β-catenin, thereby leading to increased degra-
dation of β-catenin in the brains of transgenic mice. Prese-
nilin mutations associated with Alzheimer’s disease have
also recently been demonstrated to cause defective intra-
cellular trafficking of β-catenin, a component of the prese-
nilin protein complex.107 Moreover, β-catenin levels are
reduced in the brains of patients who have Alzheimer’s
disease with presenilin-1 mutations, and loss of β-catenin
signaling appears to increase neuronal vulnerability to
apoptosis induced by amyloid-β protein.106 Thus, inhibition
of GSK-3β (for example by lithium) may serve to offset
the β-catenin destabilizing effects of mutated forms of
presenilin-1, and thereby reduce the vulnerability of af-
fected neurons to apoptosis induced by β-amyloid protein
(see Figure 2).

NEUROPROTECTIVE EFFECTS OF LITHIUM

Compelling Preclinical Evidence
Robust effects of lithium on bcl-2 and GSK-3β (see

Figure 2) in the mature CNS suggest that this cation, at
therapeutically relevant concentrations, may also possess
significant neuroprotective properties. Indeed, although
the effects of lithium on GSK-3β and, in particular, on
bcl-2 are very recent observations, several earlier studies
had already demonstrated neuroprotective properties of
lithium.108–114 More recently, a growing body of evidence
is convincingly demonstrating that lithium does truly exert
neuroprotective effects both in vitro and in vivo. The pro-
tective effects of lithium have been investigated in a num-
ber of in vitro studies using rat cerebellar granule cells.
When switched to nondepolarizing medium after matura-
tion in vitro, cerebellar granule cells have been shown to
undergo massive apoptotic cell death. Lithium has been
shown to robustly protect the cells in this paradigm, and
interestingly, lithium’s effects require new protein syn-

thesis.114 Other independent laboratories have also utilized
the cerebellar granule cell model and have demonstrated
that lithium robustly protects against the toxic effects
of a variety of insults, including glutamate, N-methyl-D-
aspartate (NMDA) receptor activation, low potassium,
and toxic concentrations of anticonvulsants.109,115,116 The
protective effects of lithium against the deleterious effects
of glutamate and NMDA receptor activation have also
been demonstrated to occur in hippocampal and cortical
neurons in culture. In addition to these “harsh insults,”
lithium has also been shown to exert protective effects in a
more “naturalistic” paradigm: age-induced cerebellar
granule cell death.116 Other in vitro studies have utilized
cultured cells with properties of catecholaminergic neu-
rons, and it has been demonstrated that lithium induces
the survival of PC12 cells after serum/nerve growth
factor deprivation,108 protects both PC12 cells and human
neuroblastoma SH-SY5Y cells from ouabain toxicity,111

and protects SH-SY5Y cells from both thapsigargin-
(which mobilizes intracellular Ca++) and 1-methyl-4-
phenylpyridinium ion (MPP+)-induced cell death (Figure
5). Most recently, lithium has been shown to prevent the
enhanced phosphorylation of tau protein at critical sites
when cultured rat cortical neurons are incubated with
β-amyloid.111 Moreover, in this study lithium also signifi-
cantly protected the cultured neurons from β-amyloid–
induced cell death.111

In addition to the demonstration of protective effects in
vitro, a number of studies have also investigated the neuro-
protective effects of lithium in vivo. Thus, Inouye and as-
sociates112 exposed newborn mice to gamma irradiation,
focusing on proliferating cells of the external granular
layer, which are known to be highly sensitive to ionizing
radiation. They found that lithium pretreatment delayed
radiation-induced apoptosis in these cells. Studies have
also investigated the effects of lithium on the biochemical
and behavioral manifestations of excitotoxic lesions of the
cholinergic system.113 These studies have demonstrated
that lithium pretreatment attenuated both the behavioral
deficits (passive avoidance and ambulatory behavior) and
the reduction in choline acetyl transferase activity by fore-
brain cholinergic system lesions.113 In another study inves-
tigating the effects of lithium against excitotoxic insults, it
was demonstrated that lithium attenuated the kainic acid–
induced reduction in glutamate decarboxylase levels and
[3H]D-aspartate uptake.117 Chronic lithium has recently
been shown to exert dramatic protective effects against
middle cerebral artery occlusion, reducing not only the in-
farct size (by 56%), but also the neurologic deficits (abnor-
mal posture and hemiplegia).118 Most recently, the same
research group has demonstrated in a putative model of
Huntington’s disease that chronic in vivo lithium treatment
robustly protects neurons in the striatum from quinolinic
acid–induced toxicity.119 Table 3 summarizes some of the
most robust experimental evidence demonstrating neuro-
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protective effects of lithium in vitro and in vivo. It must be
acknowledged at this point that the regulation of cell sur-
vival and cell death is a complex process involving mul-
tiple interacting signaling pathways, transcription factors,
and gene expression. Thus, the effects of lithium on other
signaling pathways and transcription factors35,37 may also
contribute to its neuroprotective effects. However, in view
of the major neuroprotective role of bcl-2 in a variety of
in vitro and in vivo experimental paradigms (references
81–83 and references therein), lithium’s robust up-
regulation of bcl-2 levels at therapeutically relevant
concentrations very likely plays a major role in its neuro-
protective effects.

Does Lithium Affect Neurogenesis?
As discussed already, utilizing a method for labeling

cell division directly in the adult human brain, Eriksson
and colleagues20 have shown that the dentate gyrus (an
area where robust lithium-induced increases in bcl-2 lev-
els are observed) can produce new neurons during adult-
hood in humans. In view of the robust effects of bcl-2 on
the regeneration of CNS axons88 in addition to its potent
neuroprotective effects, we have recently undertaken a
study to determine if lithium administration results in an
increased number of BrdU- (bromodeoxyuridine, a thymi-
dine analog that is incorporated into the DNA of dividing
cells) positive neurons in the hippocampus of adult ro-

dents. We have found that 2 to 3 weeks of lithium admin-
istration does, indeed, result in an increase in the number
of BrdU-positive neurons in the dentate gyrus (G. Chen,
M.D.; F. Du, Ph.D.; H.K.M., manuscript submitted). Over-
all, the data clearly suggest that the effects of lithium
on CNS bcl-2 levels (and accompanying neurotrophic/
neuroprotective effects, vide infra) may be of considerable
importance in the long-term treatment of mood disorders
(Figure 6). To more definitively make such an assertion, it
is clearly necessary to demonstrate in a longitudinal study
that lithium treatment does indeed reduce or delay CNS
cell death and/or atrophy in patients with mood disorder.
Unfortunately, such data are presently not available; how-
ever, subsequent to the demonstration of lithium’s robust
effects on CNS bcl-2 levels, Drevets and associates have
reanalyzed the volumetric data from their cohort of pa-
tients with familial bipolar and unipolar depression. In-
triguingly, they have found that the lithium-treated sub-
jects exhibit smaller reductions in frontal cortex volumes
than the non–lithium-treated patients (W. Drevets, M.D.,
written communication, March 1999), findings that are
compatible with a neurotrophic/neuroprotective effect of
chronic lithium treatment.

Can the Neurotrophic/Neuroprotective Effects
of Lithium Be Demonstrated Longitudinally in
Humans in the CNS in Vivo?

We have recently undertaken a clinical study to deter-
mine if lithium may also exert neurotrophic/neuroprotec-
tive effects in the human brain in vivo. Proton magnetic
resonance spectroscopy (MRS) is a tool that provides a
noninvasive window to functional brain neurochemistry.
N-acetyl-aspartate (NAA) is one of the many neuro-
chemical compounds that can be quantitatively assessed

Figure 5. Neuroprotective Effects of Lithium In Vitroa

aHuman SH-SY5Y neuroblastoma cells were incubated with lithium
(1 mM) for 6 days in inositol-free MEM, and were then exposed to 2
different toxins: thapsigargin (which mobilizes intracellular calcium)
or 1-methyl-4-phenylpyridinium ion (MPP+). The mitochondrial
dehydrogenase activity that cleaves 3-(4,5-dimethylthiazol-2-yl)-2,
5-diphenyl tetrazolium bromide (MTT) was used to determine cell
survival in a quantitative colorimetric assay. The tetrazolium ring of
MTT is cleaved by various dehydrogenase enzymes in active
mitochondria, forming a blue-colored insoluble product, formazan.
Cells were incubated with MTT (125 µg/mL) added to the growth
medium for 1 h at 37°C. The medium was then aspirated, and the
formazan product was dissolved in dimethyl sulfoxide and quantified
spectrophotometrically at 540 nm. The results are expressed as a
percentage of control culture viability. Six days of lithium treatment
exerted significant protective effects against both toxins.
*p < .05.
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Table 3. Experimental Paradigms in Which Lithium Has Been
Demonstrated to Exert Neuroprotective Effectsa

Protects cultured neurons against glutamate and
N-methyl-D-aspartate–induced cell death

Protects cerebellar granule cells from KCl deprivation and
anticonvulsant- or age-induced apoptosis

Induces survival of PC12 cells after serum/neurotrophic growth factor
deprivation

Protects PC12 and SH-SY5Y cells from ouabain toxicity
Protects cultured neurons from β-amyloid toxicity
Delays radiation-induced apoptosis in external granule cells of mouse

cerebellum
Protects SH-SY5Y cells from Ca++ and 1-methyl-4-phenylpyridinium

ion (MPP+) toxicity
Attenuates behavioral deficits and choline acetyltransferase activity

reduction by forebrain cholinergic system lesions
Reduces middle cerebral artery occlusion–induced infarct size and

neurologic deficits
Protects striatal neurons against quinolinic acid–induced toxicity
aAdapted with permission from Manji et al.50 Summarized from
Jope,37,38 Manji et al.,39 Lu et al.,80 Munoz-Montano et al.,103 Lovestone
et al.,105 Volonte et al.108 D’Mello et al.,109 Li et al.,110 Alvarez et al.,111

Grignon et al.,114 Nonaka et al.,115,116 Sparapani et al.,117 Nonaka and
Chuang,118 and Chuang et al.119
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via MRS (Figure 7). NAA is the predominant resonance in
the proton MRS spectrum of the normal adult human
brain, and while the functional role of this amino acid has
not been definitively determined, NAA is a putative neu-
ronal marker,120 localized to mature neurons and not found
in mature glial cells, cerebrospinal fluid, or blood. A rela-
tive decrease in this compound may reflect decreased neu-
ronal viability or function or neuronal loss. (For an excel-
lent recent review of NAA, see reference 121.) In a
prospective longitudinal study, we have utilized quantita-
tive in vivo proton MRS to test the hypothesis that

1. similar to the preclinical findings in the rodent brain
and in human neuronal cells in culture, chronic
lithium increases neuronal viability/function in the
human brain in vivo, as evidenced by increased
CNS levels of NAA in both medication-free pa-
tients who have manic depressive illness and
healthy subjects, and

2. putative lithium-induced changes in NAA levels
are related to the gray matter content of different
brain regions.

Proton MRS spectra are acquired from 8-cc regions of
interest (ROIs) in the frontal, temporal, parietal, and oc-

cipital lobes, with an acquisition time of 5 min/ROI
(stimulated echo acquisition mode pulse sequence echo
time = 30 msec, modulation time = 13.7 msec, repetition
time = 2000 msec).122 Two trained individuals analyzed
the in vivo nuclear magnetic resonance data with MRUI-
VARPRO time domain spectral analysis software123,124;
these individuals were blind to the study information and
to each other’s results. After extensive validation of this
method for in vivo measurement of regional NAA concen-
tration, we have begun to apply this methodology in our
studies of patients who have manic depressive illness and
healthy volunteers undergoing lithium administration. We
have demonstrated for the first time that chronic lithium
administration at therapeutic doses increases NAA con-
centration in the human brain in vivo.125,126 These findings
provide intriguing indirect support for the contention that,
similar to the findings observed in the rodent brain and in
human neuronal cells in culture, chronic lithium increases
neuronal viability/function in the human brain. Further-
more, we observed a striking ~0.97 correlation between
lithium-induced NAA increases and voxel gray matter
content.126 Together, these exciting new results support the
contention that some of the long-term beneficial effects of
lithium may be mediated by neurotrophic/neuroprotective
events (Figure 8).

Figure 6. Neuroprotective Effects of Lithium:
The Role of Bcl-2a

aDerived from Merry and Korsmeyer,81 Adams and Cory,82

Bruckheimer et al.,83 Sadoul,84 and Li and Yuan.85 Abbreviations: Apaf-
1 = apoptotic protease-activating factor-1, Bax = a pro-apoptotic
protein from the bcl-2 family, bcl-2 = an anti-apoptotic protein from
the bcl-2 (B-cell lymphoma/leukemia-2 gene) family,
ced = antiapoptotic gene that encodes caspase proteins, Cyt
C = cytochrome c, ∆Ψm = mitochondrial transmembrane potential,
PARP = poly(ADP-ribose) polymerase, p53 = pro-apoptotic protein,
PTP = permeability transition pore, ROS = reactive oxygen species.

This figure depicts the manner by which lithium may exert
neurotrophic/neuroprotective effects in the long-term treatment of
mood disorders. Genetic/neurodevelopmental factors, repeated
affective episodes (and likely elevations of glucocorticoids), and
illness progression may all contribute to the volumetric reductions and
cell death/atrophy observed in mood disorders. Lithium, via its effects
on bcl-2 and p53, may exert effects on the mitochondrial permeability
transition pore, a key event in cell death.
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Figure 7. Quantitation of Lithium-Induced Changes in
N-Acetyl-Aspartate (NAA) Levels Using Proton Magnetic
Resonance Spectroscopy (MRS)a

aAdapted with permission from Manji et al.74 Abbreviations:
Cho = choline compounds, Cr = creatine/phosphocreatine,
Glx = glutamate/glutamine, mI = myo-inositol, ppm = parts per
million.

The Biochemistry portion of this figure is the typical proton MRS
spectrum from the frontal lobe of a patient with bipolar disorder.
Proton MRS is a tool that provides a noninvasive window to functional
brain neurochemistry. NAA is one of the many neurochemical
compounds that can be quantitatively assessed via MRS. NAA is the
predominant resonance in the proton MRS spectrum of the normal
adult human brain, and while the functional role of this amino acid has
not been definitively determined, NAA is a putative neuronal marker.

The Anatomy portion of this figure has the voxel placement in
regions of interest in the frontal, temporal, occipital, and parietal
cortex in a longitudinal study investigating the effects of lithium on
regional NAA levels.
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CONCLUDING REMARKS

To date, lithium remains the only medication that has
been demonstrated to produce such robust increases in the
levels of bcl-2 in areas of frontal cortex, hippocampus, and
striatum in vivo. The clear evidence for lithium’s neuro-
protective effects, as well as the growing appreciation that
mood disorders are associated with cell loss and/or atro-
phy, suggests that these effects may be very relevant for
the long-term treatment of mood disorders. Does long-term
lithium treatment actually retard disease- or affective epi-
sode–induced cell loss or atrophy? The distinction between
disease progression and affective episodes per se is an im-
portant one, since it is quite possible that the cytoprotective
effects of lithium may be independent of its ability to treat
or prevent affective episodes. There are presently no lon-
gitudinal studies that we are aware of which can adequately
address this question, but this is clearly a very important
and fundamental issue worthy of investigation. Thus,
longitudinal studies comparing the long-term beneficial
effects (using serial volumetric MRI scans or MRS quan-
titation of NAA levels for example) of lithium and anti-
convulsants that do not share lithium’s effects on bcl-2 or
GSK-3β are clearly warranted. Similarly, the data suggest
that the potential protective effects of lithium in conditions
associated with high glucocorticoid levels such as Cushing
disease may also be worthy of investigation.

The robust increases in bcl-2 levels and the inhibition
of GSK-3β (and accompanying effects on tau and
β-catenin) as well as the clear evidence for neuroprotec-
tive effects all suggest that the potential efficacy of lith-
ium in the long-term treatment of various neurodegenera-

tive disorders should be investigated. Although there have
been some major breakthroughs in the identification of the
genetic and pathogenic causes of many neurodegenerative
diseases, the currently available therapies for nearly all of
these disorders are clearly quite inadequate. Increasing
knowledge of etiology and pathogenesis will provide future
opportunities to develop specific therapies aimed at protect-
ing neurons from underlying degenerative processes. The
data reviewed in this article suggest that we may have over-
looked the potential of a simple monovalent cation that has
been used therapeutically for other CNS disorders for de-
cades. An extensive literature search revealed no data to
support or refute the contention that chronic lithium admin-
istration to patients with manic depressive illness results in
a reduction in the incidence and/or severity of neurodegen-
erative disorders in this population. The only indirect hu-
man data that we are aware of are the data from Drevets
and associates demonstrating smaller subgenual prefrontal
cortex volume decrements in lithium-treated subjects (W.
Drevets, M.D., written communication, March 1999) and
the longitudinal study126 demonstrating lithium-induced in-
creases in NAA levels (vide supra). Many questions still to
be answered include the identification of the biochemical
and morphological identity of the cells in which lithium
brings about the most robust increases in bcl-2 levels.

We fully agree with the absolute need for carefully con-
trolled studies and the need to refrain from exaggerated, un-
substantiated claims127; however, while we search for the
improved therapeutics of the future, we suggest that the ef-
ficacy of lithium in retarding disease progression clearly
needs to be investigated. It is clear that lithium will very
likely have no benefit in the acute treatment of various
neurodegenerative disorders, and the increased sensitivity
(with respect to side effects) of individuals with these ill-
nesses suggests that lithium may even cause an acute wors-
ening in some cases. However, studies in our laboratory
have shown that chronic treatment of rodents with low doses
of lithium (resulting in plasma concentrations ~ 0.3 mM)
also robustly increases bcl-2 levels in the frontal cortex (Fig-
ure 9). Thus, although more detailed neuroanatomical stud-
ies are required, the requisite “bcl-2 up-regulating dose” of
lithium may, in fact, be quite tolerable for most patients. In
sum, recent advances in cellular and molecular biology have
facilitated the identification of 2 novel, unexpected targets
for the actions of lithium; these targets appear to play a ma-
jor role in lithium’s neuroprotective effects. We suggest that
a reconceptualization of the long-term use of lithium may be
warranted—namely, that the use of lithium should be con-
sidered as a long-term neurotrophic/neuroprotective agent in
the treatment of mood disorders, irrespective of the “pri-
mary” treatment modality being used for the condition.

Disclosure of off-label usage: The authors have determined that, to the
best of their knowledge, no investigational information about pharmaceu-
tical agents has been presented in this article that is outside U.S. Food and
Drug Administration–approved labeling.

Figure 8. Mechanism by Which Lithium May Increase
N-Acetyl-Aspartate (NAA) Levelsa

aLithium, via its effects on bcl-2, may exert major neurotrophic
effects, resulting in neuropil increases, accompanied by increases
in NAA levels.
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