Disruptive behavior disorders and related difficulties (eg, aggression, defiance) are among the most prevalent types of mental disorders affecting children and adolescents.1,2 Untreated disruptive behaviors impose significant emotional and economic costs as well as burden to individuals, families, and societies.3,4 There are multiple evidence-based treatments for disruptive behaviors,5–7 among which, parent training programs have a strong body of evidence supporting their effectiveness.5–7 The term parent training refers to a body of treatment procedures in which parents are trained to alter their child’s behavior at home based on models suggesting that parenting practices play a significant role in directing their children toward both appropriate and nonappropriate behaviors.8,9 The procedures lean on different theories, such as social learning, used to develop positive, prosocial behaviors; to decrease deviant behaviors; and to nurture a constructive relationship between the parents and the child.6,10

The promise of this approach is demonstrated in meta-analytic examination of parent training outcomes showing that programs in which only the parent received the intervention resulted in moderate immediate effect size improvements in child behavior, parent behavior, and parental perceptions (effect sizes = 0.47, 0.54, and 0.59, respectively).11 The provision of evidence-based treatments for children and adolescents is very limited.12 Overall, barriers to receiving treatment include lack of trained staff, cost, inconvenient time or location of services, and stigma.13–15 These barriers lead to poor quality of care for youth with disruptive behaviors. For example, research suggests that psychotropic medications are prescribed for a majority of youth with disruptive behaviors without attempting psychological interventions such as parent training.16

Other than restricted availability of interventions such as parent training, a systematic review17 of behavioral parent training programs revealed that at least 25% of identified parents do not enroll and that the percentage of treatment sessions attended by the average participant is 72%.

Digitally based interventions have been introduced to address barriers in mental health services18,19 and more specifically to promote the engagement with...
and access to evidence-based programs through digitally assisted parent training programs (DPTs).20–22 Interestingly, parent training aimed at addressing child behavior problems has been one of the first domains to introduce the use of technologies in older formats (eg, videotape, television) to engage parents outside of traditional treatment settings and has shown preliminary efficacy in its self-directed digital forms.23 However, while advances have been made in this field in recent years, no systematic review has thoroughly examined DPTs for treating disruptive behaviors among children and adolescents. The aim of this article was, therefore, to address this gap by systematically reviewing the literature on DPTs efficacy and to map out the different program and intervention designs that were used in order to inform stakeholders regarding the state of the art in this domain and to identify main areas for future consideration.

METHODS

This review was carried out in line with the PRISMA statement.26

Data Sources

Computer searches of PubMed, PsycINFO, and EMBASE databases were conducted for studies published between January 1, 2000, and March 1, 2016. The search time window was limited to 2000 because of the rapid technology development and to include technologies that largely meet the expectations of today’s users.28 To be inclusive, we used broad search terms in varying combinations for parent, training, technologies (eg, online, computerized, mobile), and disruptive behavior problems (see eAppendix 1 for complete PsycINFO search terms). A search for reference to technology was also conducted by author name, using the names of known experts in the area of behavioral parent training programs (eg, Dumas, Eyberg, Forehand, Jones, Kazdin, Patterson, Sanders, Webster-Stratton). Finally, reference lists of included and review articles were searched manually for additional references.

Selection of Studies

The search aimed to detect all studies assessing the effectiveness of DPTs aimed at children or adolescents with disruptive behaviors. Six criteria were used to select studies for inclusion: (1) the study was published in English and in a peer-reviewed source; (2) the study reported on a parent training intervention targeting the child’s disruptive behavior problems measured with a valid scale (but not targeting criminal activities, child maltreatment, or general child rearing) with or without a control condition; (3) the program was designed to use digital media or software programs (eg, mobile app, DVD, online) not to be primarily used within a therapy setting (eg, group, face-to-face, each in the presence of a therapist); (4) the targeted children did not have developmental delay or physical health impairment; (5) the study reported standardized outcomes beyond satisfaction regarding child behavior (eg, Eyberg Child Behavior Inventory29,30); and (6) the study had at least 5 participants per group. The first 2 authors, a clinical psychologist and psychiatrist, independently assessed all potentially relevant articles for inclusion. Any disagreements were resolved through discussion and consensus.

Data Extraction

Two reviewers (A.B. with either A.P. or N.M.) independently extracted relevant data from selected studies, including (1) study design (eg, randomized trial, number of participants in each arm), (2) recruitment and sample characteristics (eg, child’s age, severity level of symptoms), (3) intervention description, (4) theory and areas covered in the intervention, (5) digital program details (ie, main features), (6) user’s attrition and engagement with the technology, and (7) main findings. To minimize reporting bias, efforts were made to extract and report positive and negative findings from the included studies. Severity level of undesirable child behavior at the beginning of treatment was coded as “clinical” when data indicated a clinical range of disruptive behavior disorders in the sample and was coded as “nonclinical” if data indicated that the study did not include mostly children in the clinical range of disruptive behavior disorders, based on standard measures (eg, Eyberg Child Behavior Inventory, Problem scale score < 15) or inclusion criteria. Any discrepancies were resolved by consensus.

To organize the data extraction and analysis, 2 tables were created, 1 that describes characteristics of empirical studies and 1 that provides an overview of the digital programs used in the empirical studies. The results were then organized by the following sections: sample characteristics (age, socioeconomic background, clinical range of symptoms), methodological quality (assessment described below), intervention program characteristics (theoretical basis, number of sessions, time period, design and program components), availability of human support during the intervention, treatment recruitment and setting, program completion and user engagement, and treatment outcomes (which included a section on studies focusing on families with low socioeconomic status). Whenever studies were not all relevant for a certain section (eg, self-directed interventions), the group of analyzed studies was defined within that section. To avoid skewing the results, 2 sections, “intervention program characteristics” and “availability of human support,” related to the number of different programs identified in the systematic review and not to the number of identified studies examining these programs.
Technology-Assisted Parent Training

Assessment of Methodological Quality

Methodological quality and procedures were assessed using the Cochrane Collaboration risk of bias tool. The domains addressed were random sequence generation, appropriate allocation procedure (eg, allocation concealment prior to allocation time), incomplete outcome data, selective outcomes reporting, balance of baseline characteristics, and “other biases” (ie, problems not covered in other domains, such as inappropriate recruitment methods). Since it is not feasible to blind participants for behavioral treatment, this assessment item is not presented. The first 2 authors independently assessed the studies’ methodological quality. Any disagreements were resolved through discussion and consensus.

RESULTS

Search Results

The electronic and manual searches produced a total of 5,595 records. Through the first screening process, 76 articles were identified and retrieved for detailed evaluation (Figure 1). A total of 15 studies with 2,427 participants (1,500 in DPT conditions), 12 of which were randomized trials, met all inclusion criteria (Table 1). One of these studies was related to the same intervention and sample examined in Enebrink and colleagues’ work, but it provided additional information. For clarity, we included these details in the presentation of the study by Enebrink et al (accompanied by appropriate citation) and counted 14 intervention studies in our review.

Selected characteristics of the studies are presented in Table 1, and information regarding the digital intervention design, theoretical basis, and features is presented in Table 2. The 14 studies tested 10 different technology-assisted parent training interventions. One program (Triple P Online) was examined in 2 studies and 1 intervention design (Parenting Wisely/Parenting Toolkit for adolescents) was examined in 4 different studies.

Sample Characteristics

Ten studies were aimed at children aged mostly < 9 years, and 4 studies were aimed at older children with an average age > 11 years. Five studies specifically targeted families with low socioeconomic status, and the other 9 did not target a specific socioeconomic status. Finally, while 10 studies were focused on a population of children with a clinical range of symptoms, 4 studies had data suggesting that the included children had only a subclinical range of symptoms. Among those, all except Love et al were studies examining the same intervention design for adolescents.

Methodological Quality

The quality of the included studies is summarized in Figure 2. The randomized trials, focused on interventions for young children (average age < 9 years; studies = 9), mostly reported adequate study procedures and adequately reported the findings. In 4 studies, it was unclear whether randomization was conducted with appropriate methods, and in 3 of these studies, all targeting adolescents, it was unclear whether the allocation was concealed from relevant staff. Two of these studies, however, provided analysis of groups at baseline showing no significant differences, suggesting that the randomization procedure was adequate. Two studies did not address the question of incomplete...
Table 1. Characteristics of Studies Assessing Digitally Assisted Parent Training Programs (DPTs) Targeting Children and Adolescent With Disruptive Behaviors

<table>
<thead>
<tr>
<th>Study</th>
<th>Study Design</th>
<th>Remarks</th>
<th>Recruitment and Sample</th>
<th>Clinical Symptom Level</th>
<th>Treatment Setting</th>
<th>Engagement</th>
<th>Main Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefai et al</td>
<td>RCT</td>
<td>Parenting Wisely, n = 39 WLC, n = 46</td>
<td>The group condition viewed the program accompanied with a discussion facilitator</td>
<td>Advertisements (Australia) Age, 9–15 y (mean = 11.9), 50.9% male</td>
<td>Not within the clinical range</td>
<td>Local</td>
<td>38/40 Subjects (95%) in DPT completed the program In comparison to WLC, DPT showed significant improvements in child behavior (ECBI mean $d = 0.17$). No significant differences were found between intervention groups Effects were maintained at 3-mo follow-up</td>
</tr>
<tr>
<td>Cotter et al</td>
<td>Quasi-experiment</td>
<td>Online Parenting Wisely, n = 38</td>
<td>Parents were assigned to their preferred treatment formats</td>
<td>Community outreach (eg, churches; United States) Low SES; age, 11–15 y; 23% male</td>
<td>Not within the clinical range</td>
<td>Remote</td>
<td>All participants completed the 9 sessions Significant improvement in child behavior (CBCL-externalizing scale, $d = 0.20$) that did not significantly differ from the group settings outcomes</td>
</tr>
<tr>
<td>Enebrink et al</td>
<td>RCT</td>
<td>Parenting Wisely, n = 38 WLC, n = 39</td>
<td></td>
<td>Advertisements in newspapers/internet (Sweden) Age, 3–12 y (mean = 6.8), 57.7% male</td>
<td>Clinical range of symptoms</td>
<td>Remote</td>
<td>Participants completed an average of 5.72/8 sessions In comparison to WLC, DPT had significantly greater improvement in child behavior (ECBI mean, $d = 0.87$) Effect continued to improve during the 18-mo period after the intervention, whereas parenting skills deteriorated 38</td>
</tr>
<tr>
<td>Irvine et al</td>
<td>RCT</td>
<td>Parenting Toolkit, n = 155 WLC, n = 152</td>
<td></td>
<td>Local advertising (United States) Low SES; age, mean (SD), 13.1 (3.4); 52.9% male</td>
<td>Not within the clinical range</td>
<td>Local</td>
<td>92/155 Allocated participants (59.3%) began treatment 90 of 92 Participants beginning treatment (97.8%) completed it</td>
</tr>
<tr>
<td>Jones et al</td>
<td>RCT</td>
<td>Parenting Toolkit, n = 155 WLC, n = 152</td>
<td></td>
<td>Community based (United States) Low SES; age, 3–8 y (mean = 5.7); 53% male</td>
<td>Clinical range of symptoms</td>
<td>Remote</td>
<td>15/19 Subjects (79%) completed the intervention (2 dropped out from each condition) Smartphone enhancement condition descriptively improved child behavior (eg, between-group effect sizes favored the enhanced condition: ECBI mean $d = 0.76$) The enhanced group was more engaged with treatment (eg, BPT was significantly more likely to participate in midweek check-ins [93% compared to the standard group [58%])</td>
</tr>
<tr>
<td>Love et al</td>
<td>1-arm trial</td>
<td>N= 155 (149 completed preassessment)</td>
<td></td>
<td>Agency programs (United States) Highly vulnerable families, low SES; age, 2–12 y</td>
<td>Not within the clinical range</td>
<td>Both</td>
<td>131/149 Subjects (87.9%) completed post assessments 61/149 Subjects (40.9%) completed all modules Significant reductions for most child behavior indicators (eg, ECBI $\eta^2_p = .02$–.03)</td>
</tr>
<tr>
<td>Moravinska et al</td>
<td>RCT</td>
<td>Parenting Toolkit, n = 73 WLC, n = 66</td>
<td></td>
<td>School advertisements (Australia) Age, 2–10 y (mean = 6.1), 61.6% male</td>
<td>Clinical range of symptoms</td>
<td>Remote</td>
<td>DPT: 45/73 (61.6%) completed post assessments Compared to WLC, the intervention group showed significant improvement in child behavior (ECBI mean $d = 0.47$) Effects were maintained at 6-mo follow-up</td>
</tr>
<tr>
<td>Porzig-Drummond</td>
<td>RCT</td>
<td>Parenting Toolkit, n = 42 WLC, n = 38</td>
<td></td>
<td>Advertisements via internet (Australia) Age, 2–10 y (mean = 5.3) 50% male</td>
<td>Clinical range of symptoms</td>
<td>Remote</td>
<td>33/42 Subjects (78.6%) completed the program Compared to WLC, parents completing the intervention reported significantly better improvements in child behavior (ECBI $d = 0.72$) Effects were maintained at 6-mo follow-up</td>
</tr>
</tbody>
</table>

(continued)
Table 1 (continued). Characteristics of Studies Assessing Digitally Assisted Parent Training Programs (DPTs) Targeting Children and Adolescent With Disruptive Behaviors

<table>
<thead>
<tr>
<th>Study</th>
<th>Study Design</th>
<th>Study Details</th>
<th>Recruitment and Sample</th>
<th>Clinical Symptom Level</th>
<th>Treatment Setting*</th>
<th>Engagement</th>
<th>Main Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabbitt et al44</td>
<td>RCT</td>
<td>Reduced contact, n = 46; Full contact, n = 40</td>
<td>Full contact included 8–11 fifty-min video conference sessions from the same therapists who participated in the reduced-contact condition</td>
<td>United States; Age, 6–13 y (mean = 8.5), 58% male</td>
<td>Clinical range of symptoms</td>
<td>Remote</td>
<td>No significant differences were found in most outcome measures between groups, including therapeutic alliance measurement, and self-reported adherence to treatment. Parents and therapist in the full-contact condition rated their experience of treatment as more acceptable. A consistent improvement in child behavior was found in both groups; (eg, CBCL Externalizing scale $d = 1.06$). No differences were found between groups and a matched benchmarked group of families receiving in-person parent management training.</td>
</tr>
<tr>
<td>Sanders et al45</td>
<td>RCT</td>
<td>Standard TV episodes, n = 231; Enhanced, n = 222</td>
<td>TV and internet advertisements (United Kingdom); Age, 2–9 y (mean = 4.7), 64.9% male</td>
<td>Remote</td>
<td>Clinical range of symptoms</td>
<td>Remote</td>
<td>No significant differences were found between the standard and enhanced conditions. Significant improvement was noted for child behavior (ECBI mean $d = 0.50$). Effects were maintained at 6-mo follow-up.</td>
</tr>
<tr>
<td>Sanders et al46</td>
<td>RCT</td>
<td>DPT, n = 60; NTC, n = 56</td>
<td>Mass and local media (Australia); Age, 2–9 y (mean = 4.7), 67% male</td>
<td>Remote</td>
<td>Clinical range of symptoms</td>
<td>Remote</td>
<td>Compared to NTC, parents receiving the intervention reported significantly better improvement in child behavior (ECBI mean $d = 1.00$). Effect was maintained at 6-mo follow-up.</td>
</tr>
<tr>
<td>Sanders et al47</td>
<td>RCT</td>
<td>Triple P Online, n = 97; Wait-list (WLC) control, n = 96</td>
<td>The standard group received the 10-chapter Every Parent's Self-Help Workbook; New Zealand; Age, 3–8 y (mean = 5.63), 67% male</td>
<td>Remote</td>
<td>Clinical range of symptoms</td>
<td>Remote</td>
<td>Compared to DPT, parents received the allocated intervention. No significant differences were found between the standard and enhanced conditions. Triple P Online condition showed significant improvements in child behavior (ECBI mean $d = 1.13$). Effect was maintained at 6-mo follow-up.</td>
</tr>
<tr>
<td>Segal et al48</td>
<td>RCT</td>
<td>Parenting Wisely: IM, n = 21; NV, n = 21</td>
<td>Mental health clinics and local community (United States); Low SES; age, 11–18 y</td>
<td>Local</td>
<td>Clinical range of symptoms</td>
<td>Not reported</td>
<td>Both IM and NV significantly decreased reported child behavior problems (ECBI $d = 0.78$ and 0.83, respectively) without significant differences between groups.</td>
</tr>
<tr>
<td>Sourander et al49</td>
<td>RCT</td>
<td>DPT, n = 232; Education control, n = 232</td>
<td>Education control included access to a website with positive parenting strategies information and one 45-min coach phone call</td>
<td>A population based screening at age 4 y annual check-up (Finland); 61.9% male</td>
<td>Clinical range of symptoms</td>
<td>Remote</td>
<td>Compared to education control, the intervention resulted in significant improvement in child behavior (CBCL Externallizing scale $d = 0.34$ at 12 mo) and most psychiatric symptom measures (eg, internalizing symptoms, sleep)</td>
</tr>
</tbody>
</table>

*For treatment setting, local = within community based center or clinic, remote = accessed remotely, and both = parents could choose from both options.

*Some WLC subjects were referred to DPT or group treatment after 3 months and were included in the intervention analysis.

*Eighty-four participants were allocated to study condition; however, only 80 completed preassessments.

*Reported recruiting 454 participants but 453 were eventually described in the analysis.

Abbreviations: BPT = behavioral parent training, CBCL = Child Behavior Checklist, ECBI = Eyberg Child Behavior Inventory, IM = interactive multimedia delivered through computers, NTC = no treatment control, NV = noninteractive videotape presenting the scenes in a linear fashion, RCT = randomized controlled trial, SES = socioeconomical status, WLC = wait-list control.
Table 2. Overview of the Digitally Assisted Parent Training Programs Targeting Children and Adolescent With Disruptive Behaviors

<table>
<thead>
<tr>
<th>Study</th>
<th>Theoretical Basis</th>
<th>Intervention</th>
<th>Digital Program Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefai et al,35 Cotter et al,36 Irvine et al,39,40 Segal et al41</td>
<td>Modifying parent-child interactions that reinforce antisocial behavior, using refraining and cognitive-restructuring methods to foster behavior change49</td>
<td>Parenting Wisely is a software program (CD-ROM) that also has an online delivery format48 and is composed of 9 topics, commonly used in 2 sessions delivered over a period of 2 wk, followed by 2–3 wk during which parents are asked to implement strategies</td>
<td>Scenario-based learning45 after selecting a problem from a list of 9, parents viewed a 2- to 3-min video clip depicting a family struggling with that problem. Parents selected a solution, viewed a video enactment of their solution, and participated in a critique of that choice. The program used demonstration, quizzing, repetition, rehearsal, recognition, and feedback for correct and incorrect answers.</td>
</tr>
<tr>
<td>Enebrink et al37</td>
<td>Based on the parent training program Comet,30 which targets parent reactions and activities to promote behavioral change in parent and then the child</td>
<td>7 Online self-directed sessions distributed over a period of 10 wk. Research assistants gave remote feedback through the website and distributed a new session each week (310 min of support per treatment)</td>
<td>Features included illustrations and videos of interactions between parents and children, downloadable material, multiple-choice questions with feedback, online diary, monitored parenting discussion forum, and the possibility to pose questions to a research assistant.</td>
</tr>
<tr>
<td>Jones et al40</td>
<td>Based on Helping the Noncompliant Child (HNC)42 Phase 1: Increase social attention to the child and reduce the frequency of competing verbal behavior Phase 2: Trains to give clear instructions and use nonphysical discipline procedures</td>
<td>Smartphone enhancement designed specifically to support HNC treatment protocol, which was composed of 8–12 weekly sessions conducted by trained MA-level graduate students</td>
<td>The enhancement included (1) 3-min skills videos for each of the taught skills, involving psychoeducation, as well as modeling of parent-child dyads; (2) daily surveys; (3) midweek therapist-parent video calls; (4) weekly videotaped home practice, which provided a “window” for therapists to relate to during session; and (5) text reminders and notifications.</td>
</tr>
<tr>
<td>Love et al43</td>
<td>See Sanders et al46 below</td>
<td>8 Modules (16-wk intervention) based on Triple P Online (see Sanders et al45) with a social media variant (Triple P Online community) designed for vulnerable young parents. Participants could complete the program online or at local agency setting with desktops and internet access</td>
<td>Included Triple P Online design with these added social media features: (1) discussion boards for users, (2) “badges” to reward parents for practicing positive parenting strategies, (3) A virtual identity (an avatar) to promote peer support while maintaining anonymity, and (4) A Triple P–accredited facilitator to monitor the site (eg, answer questions, reward parents’ shared work).</td>
</tr>
<tr>
<td>Morawska et al42</td>
<td>Based on the Triple P program (see Sanders et al45 below)</td>
<td>7 Podcasts, 9–14 min each, available for parents in 3 phases over 2 wk, followed by 2 wk during which parents were asked to implement strategies</td>
<td>The format of these podcasts was conversational, in which the presenter asked the parenting expert questions relevant to the topics discussed. Parents were e-mailed when a new set of podcasts was available to download.</td>
</tr>
<tr>
<td>Porzig-Drummond43</td>
<td>1-2-3 Magic parenting program providing parents techniques and guidance on ways to reduce children’s disruptive behaviors51</td>
<td>The program consisted of 2 digital videos (total of 226 min) viewed over 2 wk (DVD/online), followed by 2 wk during which parents were asked to implement learned strategies</td>
<td>The videos included psychoeducation and role-played video vignettes demonstrating maladaptive and adaptive parent-child interactions. Parents also received tip sheets, which summarized the main points of the program.</td>
</tr>
<tr>
<td>Rabbitt et al44</td>
<td>Traditional parent-management training Practice, feedback, and shaping were used to develop parental skills and to bring about behavior change.</td>
<td>Reduced contact: 8 prerecorded weekly online sessions + bimonthly phone calls from a mental health therapist who was recorded in the sessions. Weekly average therapist support time was 10 min</td>
<td>An assigned therapist used scripts based on a manual for parent training and recorded the sessions using professionally taped role plays (acting as the parents). A link to the sessions was sent via e-mail to the parents, who could also rewatch the sessions of prior weeks.</td>
</tr>
<tr>
<td>Sanders et al44</td>
<td>Each episode presented parents learning to implement positive parenting skills, group processes, and footage of parent-child interactions</td>
<td>All intervention conditions watched Driving Mum and Dad Mad, a 6-episode, weekly television series</td>
<td>The series presented 5 families (9 parents) with 3- to 7-year-old children with severe conduct problems, participating in Group Triple P51. Parents in the enhanced condition received the Triple P Self-Help Workbook52. Enhanced program features included reminder e-mails providing tips on salient aspects of each episode, access to a website with tip sheets, and an e-mail helpline run by an accredited Triple P service provider.</td>
</tr>
</tbody>
</table>

(continued)
 Sanders et al,45 the Triple P program directs parents to diverse parent testimonials describing their experiences, personalized content including goal setting, interactive exercises and podcasts to review session content, and automated text messaging and e-mail prompts to increase the likelihood of program completion.

Sourander et al46 promote nurturing behaviors, a low conflict environment, and children's social and emotional well-being through positive parenting practices.

Interactions within the website were personalized with the child's name, problems, strengths, and preferred activities. Coaches had platform access to monitor the successful application of new skills, respond to questions, provide encouragement, and control parents' access to new assignments.

An internet version of the Strongest Families program included midweek video calls with a therapist. Rabbitt et al44 used the technology to reduce the time that the therapist invested in treatment by providing the parent with prerecorded sessions and conducting brief bimonthly phone calls from a certified therapist. This program design decreased the amount of required human therapist time from approximately 50 minutes to 10 minutes per week. Finally, Sourander et al48 presented a software program comprising 11 weekly online sessions. The program was assisted by licensed health care professionals who monitored parents' utilization of the program and provided coaching through weekly 45-minute phone calls.

Table 2. Continued

| Study | Intervention | Theoretical Basis | Intervention Digital Program Details | Table 2. | Availability of Human Support | Self-directed DPTs. Seven of the 10 programs (70.0%) were self-directed and did not require a professional input other than technical assistance.34–37,39,41–43,45–47 One of these programs37 required remote work of approximately 5 hours per treatment, which included feedback and distribution of sessions provided by a research assistant–level staff member. | DPTs combined with professional support. Three programs (30%) integrated technology with professional support. Jones et al40 examined the use of technology to enhance standard treatment. The standard treatment included 8–12 guidance sessions conducted by therapists and master’s-level graduate students, and it was enhanced by using a smartphone program developed specifically for the treatment protocol. This enhancement also included midweek video calls with a therapist. Rabbitt et al44 used the technology to reduce the time that the therapist invested in treatment by providing the parent with prerecorded sessions and conducting brief bimonthly phone calls from a certified therapist. This program design decreased the amount of required human therapist time from approximately 50 minutes to 10 minutes per week. Finally, Sourander et al48 presented a software program comprising 11 weekly online sessions. The program was assisted by licensed health care professionals who monitored parents' utilization of the program and provided coaching through weekly 45-minute phone calls. |
Figure 2. Methodological Quality of Included Studies

<table>
<thead>
<tr>
<th>Type of Bias</th>
<th>Study</th>
<th>Random Sequence Generation</th>
<th>Appropriate Allocation Procedure</th>
<th>Incomplete Outcome Data Addressed</th>
<th>Selective Outcome Reporting</th>
<th>Balance of Baseline Characteristics</th>
<th>Other Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low risk of bias ++</td>
<td>Cefai et al35</td>
<td>+</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cotter et al36</td>
<td>NA</td>
<td>NA</td>
<td>++</td>
<td>++</td>
<td>NA</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Enebrink et al37</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irvine et al38</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jones et al39</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Love et al41</td>
<td>NA</td>
<td>NA</td>
<td>++</td>
<td>++</td>
<td>NA</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Morawska et al42</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Porzig-Drummond et al43</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rabbitte et al44</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sanders et al45</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sanders et al46</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Segal et al47</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sourander et al48</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: NA = not applicable.

Footnotes:

1. At baseline, caregivers randomized to the enhanced condition were more likely to report higher levels of child disruptive behaviors on the Eyberg Child Behavior Inventory (ECBI) Intensity scale compared to the standard condition; both groups evidenced problem behaviors in the clinical range on both the ECBI Problem and Intensity scale scores.
2. Due to technical issues, the first 20 participants (23%) were assigned nonrandomly to 1 of the 2 treatment groups. Twelve of these participants completed treatment, 6 in each treatment group.

Treatment Recruitment and Setting

Twelve studies provided recruitment information. Most of these studies (11/12; 91.7%) reported outreach for potential candidates within the local community (e.g., churches, in-house advertising) or through mass media (see Table 1). Sourander et al48 was the exception using a population-based recruitment strategy, screening 4-year-old children attending annual child health clinic checkups in the catchment area location.

All studies reported the setting of intervention and most of them (11/14; 78.6%) investigated DPTs that were accessed solely remotely. Among these studies, Jones et al46 assessed a software designed to be used remotely as an adjunct to standard ambulatory treatment, and Love et al41 also included an option for participants to access the program within community centers. In the remaining 3 studies (3/14; 21.4%),35,39,47 DPT was accessed within a community center setting.

Intervention Completion and User Engagement

As Table 1 illustrates, data regarding user engagement with the technological program were sometimes not available, and the level of noncompleters varied. The mean (SD) percentage of participants allocated to the intervention condition and reported as study completers (13 studies) was 79% (18.8%). Program participants completed a mean (SD) of 81.01% (18.1%) of available sessions (7 studies), and when including only programs with > 5 sessions, the mean (SD) percentage of completed sessions was 68.6% (13.1%) (4 studies). Love et al41 examined user engagement in 2 study cohorts and reported that the completion rates of the entire 8-module program increased from 36% (cohort 1) to 51% (cohort 2). The authors noted several differences between cohorts: (1) twice as many parents in the second cohort completed the program on a smartphone, rather than desktop; (2) cohort 2 participants “enjoyed the buzz” and support generated from cohort 1 peers; and (3) a research assistant was more available to resolve technical issues.

Treatment Outcomes

Posttreatment improvements were reported in all studies. Results of studies utilizing self-directed DPT for young children revealed that in comparison to no treatment control conditions (studies = 4), DPT interventions exhibited medium to large effect size improvements in child behavior (Cohen d between 0.47 and 0.80).37,42,43,45 In their study of highly vulnerable families with low socioeconomic status and a nonclinical range of symptoms, Love et al41 reported that the DPT resulted in small pre-intervention to post-intervention improvement in child behavior (mean Cohen d = 0.14). In comparison to no-treatment control conditions, the self-directed programs for adolescents (2
Studies Parenting Wisely/Toolkit) exhibited significant small effect size improvements in child behavior (Cohen d between 0.17 and 0.20).35,39

Jones et al40 found that the technological enhancement of treatment helped low-income families to be more engaged with treatment (eg, increased participation in midpoint check-ins) and that the enhancement may boost effect sizes for child behavior in comparison to standard treatment (Eyberg Child Behavior Inventory Cohen d between 0.54 and 0.99, descriptive difference). Sourander et al48 reported significant small effect size improvement in child behavior (Cohen $d = 0.34$) among those receiving the online treatment integrated with phone coaching in comparison to usual care that included a brief psychoeducational component.

Studies comparing between different intervention designs. Five studies34,36,44,46,47 compared between different intervention designs. Only 2 studies examined the difference between a DPT-led and therapist-led program, and both did not indicate clear differences in outcomes: Cotter et al34 conducted a quasi-experimental comparison between Parenting Wisely online DPT and group-based treatment of the same program and did not reveal a clear pattern of differences in effect size for child behavior and for other investigated measures. Rabbitt et al44 found no significant differences in most outcome measures between patients receiving full therapist support via video conferencing and those receiving the reduced support with technology enhancement. There was, however, a 14.5% lower attrition rate favoring those completing pre-assessments and post-assessments in the full-contact condition (77.5%) in comparison to those completing both assessments in the reduced-contact condition (63%). Three randomized controlled trials (RCTs)34,46,47 examined the difference between interactive and noninteractive versions of the same self-directed interventions, and results indicated no significant difference between these different intervention designs in child behavior and other investigated measures (eg, parent behavior).

Studies focusing on families with low socioeconomic status. The background characteristics of the 5 studies36,39–41,47 targeting families with low socioeconomic status differed significantly, making it difficult to identify clear outcome patterns for this important specific population. Three studies36,39,41 targeted children with a nonclinical range of symptoms, and 2 of these studies36,39 targeted mostly adolescents. The other 2 studies targeted children with a clinical range of symptoms, one being self-directed,47 and the other being utilized as an adjunct to ongoing treatment.40 These studies also differed in program length, with 3 studies36,39,47 examining the same program format for adolescents taking approximately 2 weeks to complete and the other 2 studies40,41 examining programs that took 8 weeks or more to complete.

All 3 studies targeting a nonclinical range of symptoms exhibited low effect size improvements in child behavior (eg, Cohen d ≤ 0.20). For example, in their study of highly vulnerable families with low socioeconomic status and a nonclinical range of symptoms, Love et al41 reported that the DPT resulted in small pre-intervention to post-intervention improvement in child behavior (mean Cohen $d = 0.14$). In contrast, Segal et al47 also focused on a population of adolescents’ families with low socioeconomic status, but with a clinical range of symptoms, and reported large effect size pre-intervention to post-intervention improvements in child behavior (Cohen d approximately 0.80). Finally, as noted above, the study by Jones et al40 showed preliminary positive results in enhancing treatment outcomes for families with low socioeconomic status.

DISCUSSION

This first comprehensive systematic review of DPTs for disruptive behaviors in children and adolescents identified 14 intervention studies that met inclusion criteria, 12 of which were randomized trials. These studies examined 10 different programs introducing mostly behavioral approaches for teaching parents appropriate parenting skills to elicit behavior change among their children. Our review did not identify parent training programs using new forms of technology that are based on other approaches, such as the attachment theory55 and play therapy (ie, child-parent directed play) as a first step in the therapeutic process,56 approaches that were introduced in the past harnessing older forms of technology (eg, videotapes). This finding implies that currently, technology-assisted nonbehavioral parent training programs are not well presented. It is also worth noting that of the 15 reports relating to the 14 independent studies, only 3 were published before 2012, and 9 were published after 2013, indicating recent progress made in this area.

Self-Directed DPTs

Overall, we found that self-directed DPTs resulted in positive significant improvements in child behavior: studies focusing on young children (average age < 9 years) yielded medium to large effect size improvement in child behavior, while studies focusing on adolescents yielded a small effect size improvement in child behavior. However, most of the latter focused on samples with subthreshold clinical range of symptoms, which may have reduced the observable room for improvement, as evidenced in a previous meta-analysis11 on parent training programs. Taken together, these results resemble the reported effect sizes for face-to-face parent training summarized by Lundahl et al11 which ranged from 0.24 to 0.69, and therefore indicate promising potential for these digital interventions in providing mental health care in a scalable way.

As seen in a systematic review57 of computerized programs for children with depression and anxiety, attrition and engagement with treatment are major challenges when providing self-directed interventions. This review revealed average study completion rates of 79% for parents beginning treatment, resembling or being below the 25%–30% attrition rate noted for in-person interventions.17,58,59 In addition,
the average program session completion rate for programs with more than 5 sessions was 68.57%, resembling the 72% participation rates reported in the past for in-person parent training.17 Importantly, however, 2 self-directed DPTs reported low pre-assessment to post-assessment completion rates of 61.6% and 35.1%,34,42 which suggest high attrition rates. This result may be attributed to certain features of the 2 studies: (1) remotely controlled recruitment procedures in which the pretreatment assessment was obtained from parents not being motivated to begin or complete the intervention and (2) delivery of a significant part of these 2 programs through a noninteractive design (podcasts, TV series), lacking most of the engaging features of other programs that included more than 2 sessions.

Another concern would be that DPTs may not provide similarly favorable attrition rates in comparison to in-person treatment when targeting vulnerable, low-income families. However, Love and colleagues’ study,41 which targeted children with a nonclinical range of symptoms, suggests that a mobile-based intervention with an interactive design that includes social media features may increase engagement (50% of participants finished viewing all modules) and may result in completion rates that resemble or surpass those reported in prior work60 targeting prevention with low-income families (eg, 11%–62%). Nonetheless, more studies are required to provide data regarding the applicability of self-directed DPTs to engage vulnerable populations and prove the importance of interactive features in achieving satisfying engagement and attrition rates.

Programs Combined With Professional Support

The studies combining digital features of parent training with professional support provide an interesting view at the way technology could be leveraged across a range of human-based therapy. Rabbitt and colleagues’ reduced-contact intervention design44 resembles a prior study conducted by Nixon et al,56 which used an earlier form of technology, videotapes, to reduce therapist time. These 2 studies suggest that a significant portion of the therapist work can be replaced with a recording of the therapist without relevant differences in outcomes. Rabbitt and colleagues’ program44 is intriguing as it (1) introduced this approach in a remotely administered setting; (2) reduced therapist time by approximately 80% (therapist average weekly time was reduced 5-fold, from 50 minutes to 10 minutes); (3) changed the professional contact setting from face-to-face sessions to phone calls; and (4) compared full- and reduced-contact conditions carried out by the same therapist, eliminating potential provider confounds.

However, despite these encouraging results, some challenges remain, including higher dropout rates for the reduced-contact condition compared to the full-contact condition (14.5% difference) and higher acceptability rates by both parents and therapists for the full-contact condition.44 Subsequently, Sourander et al48 offered a setting in which the coach support was delivered through phone calls, assisted by the use of an online interactive program. This hybrid design enabled the coach to maintain contact and monitor the consumers outside the session. Such a strategy might be used to engage people with other treatment designs, including those who use prerecorded sessions, in order to reduce attrition rates.

The results from both of these studies44,48 reinforce the notion that technology can be used to broadly change the setting of professionally assisted interventions and to remotely engage parents at a convenient time and place to reduce constraints.13,61–63 These designs may also increase the utilization of evidence-based treatment, as it generally is more feasible to train, supervise, and manage expert therapists for a certain illness if they are all located in the same center that covers a wide area of consumers, as shown by Sourander et al.48

Finally, Jones et al40 used technology as an enhancement to evidence-based parent training in low-income families showing promising preliminary evidence regarding the use of mobile-assisted programs in increasing parents’ engagement with services and treatment outcomes. This intervention design, currently being examined in a fully powered RCT,64 is especially important, as it seems that face-to-face therapy will remain the main source of treatment in the years to come.65,66 It is also worth noting that this intervention design might appear more appealing to professional therapists and therefore increase technology adaptation, since it might provide a way for them to improve patient engagement and satisfaction with treatments.

Limitations

Several limitations of this systematic review should be recognized when interpreting its results. First, this review was focused on published studies, and therefore it does not account for the “file drawer problem” by presenting comparable studies that were unpublished because of null results. This is common, however, to systematic reviews of this type. Second, some examinations within the Results sections are based on a small number of studies (eg, interactive vs noninteractive DPTs), and, as noted within the methodological quality assessment, a small number of studies were not RCTs and some lacked adequate power. However, we took these limitations into account when presenting and evaluating these studies and their results. Third, our ability to answer some questions was limited by the identified study characteristics, which differed on more than 2 aspects (see Table 1). Specifically, we could not examine the interaction between participants’ engagement and intervention outcomes or between symptom level and engagement with the intervention because of the large number of potential moderators (eg, program length, treatment setting). This does not mean these questions are not important but rather that more studies are needed to address them specifically within the field of DPT.

Future Directions

Several areas in need for future research were identified. First, only 1 study44 compared a form of digitally assisted
intervention to full therapist contact. Randomized trials comparing digitally led programs in their advanced interactive format and therapist-led programs are needed to better understand the therapeutic impact of these programs. Human involvement also differed among the digital programs; therefore, a clear conclusion regarding the effect of this involvement was not supported. Following prior work in other treatment domains, studies that compare 2 groups receiving DPT that differ only in the extent of human support may shed some light on this subject. Subsequently, due to the importance of therapeutic alliance as a robust predictor of positive treatment outcomes, it will be important to research if and to what degree therapeutic alliance can occur with a software program and how variation in the strength of this variable might dilute or mediate outcomes when delivering self-directed treatments.

Second, while the recruitment procedures in most studies aimed at reaching people outside traditional treatment settings to reflect a broad public health delivery approach, none of these studies directly examined how these approaches resulted in earlier engagement with services or engagement in care of a population that would not otherwise receive these services. Randomized studies that reflect the effect of digital interventions in engaging people who otherwise would not receive treatment are needed in order to address one of the main reasons for developing these interventions. Subsequently, only 5 studies focused on families with low socioeconomic background, and due to the differences in characteristics of these studies, it was difficult to determine whether DPTs provide a better opportunity to effectively reach out to these families that may face particular barriers with accessing traditional in-person therapies. Since this is a key question, more studies focusing on this population, especially with clinically relevant problem severity, are needed.

Third, the review revealed only 1 intervention design for parents of adolescents; the intervention was brief (including 2 sessions), and 75% of these studies targeted adolescents with subthreshold disruptive behavior symptoms. Therefore, on the basis of the current literature, it is not possible to determine that the effectiveness of DPTs differs between age groups and which targeted age groups will respond better to the format. Thus, additional studies of DPTs targeting different adolescent samples with clinically relevant symptoms are needed to inform stakeholders on this matter.

Fourth, it seems that studies comparing interactive (eg, online software) and noninteractive (eg, video) programs did not present results that clearly favor a certain design. Moreover, looking into the 3 interactive and the 3 noninteractive arms in these studies revealed a wide variation of designs (eg, among the variety of noninteractive programs were a TV series, a workbook, and videos presenting parenting scenarios). Therefore, more studies comparing different DPT programs are needed in order to inform stakeholders about the impact and pitfalls of different digital intervention methods and to better synthesize their results.

Finally, since this review identified many variables that might impact DPTs efficacy, it seems that this field will benefit from a single gold standard study that treats many of these different aspects as experimental variables (eg, family socioeconomic status, recruitment method, user responsive technology, therapist contact). While such studies are costly and often challenging to conduct, we believe it would greatly increase stakeholders’ understanding of the impact of different aspects on intervention outcome and clarify the value of DPTs for specific patient subgroups and clinical scenarios.

CONCLUSIONS

Technology-assisted parent training programs for disruptive behaviors showed efficacy both in self-directed and in human professional–assisted treatment formats, with satisfying program engagement rates. Preliminary results also indicate the promise of technology to enhance the effectiveness of standard treatment. While 1 study presented a feasible design for program implementation in clinical practice and while most studies included outreach procedures that seem to fit a public health delivery approach, the potential of these programs to be implemented and increase the accessibility of effective parent training services to families who have difficulty accessing indicated treatment needs to be further examined.

Submitted: July 8, 2016; accepted December 22, 2016.

Online first: May 9, 2017.

Potential conflicts of interest: Dr Kane has been a consultant for Alkermes, Eli Lilly, EnVivo (Forum), Forest, Genentech, H. Lundbeck, Intracelula Therapeutics, Janssen, Johnson & Johnson, Otsuka, Reviva, Roche, Sunovion, and Teva; has received honoraria for lectures from Janssen, Genentech, Lundbeck, and Otsuka; and is a shareholder in MedAvante, and Vanguard Research Group. Dr Correll has been a consultant and/or advisor to or has received honoraria from AbbVie, Acadia, Actavis, Alkermes, Eli Lilly, Genentech, Gerson Lehman Group, IntraCellular Therapies, Janssen/Johnson & Johnson, Lundbeck, MedAvante, Medscape, Otsuka, Pfizer, ProPhase, Reviva, Roche, Sunovion, Supernus, and Takeda; and has received grant support from Bristol-Myers Squibb, Otsuka, and Takeda. Drs Baumeil and Pawar and Ms Mathur have no conflicts of interest to disclose.

Funding/support: No direct funding was provided for this research.

Supplementary material: See accompanying pages.

REFERENCES

J Clin Psychiatry 78:8, September/October 2017

For reprints or permissions, contact permissions@psychiatrist.com. © 2017 Copyright Physicians Postgraduate Press, Inc.
Baumel et al.

It is illegal to post this copyrighted PDF on any website.

You are prohibited from making this PDF publicly available.

For reprints or permissions, contact permissions@psychiatrist.com. © 2017 Copyright Physicians Postgraduate Press, Inc.

J Clin Psychiatry 78:8, September/October 2017
Technology-Assisted Parent Training

Editor’s Note: We encourage authors to submit papers for consideration as a part of our Focus on Childhood and Adolescent Mental Health section. Please contact Karen D. Wagner, MD, PhD, at kwagner@psychiatrist.com.

Supplementary material follows this article.

Supplementary Material

Article Title: Technology-Assisted Parent Training Programs for Children and Adolescents With Disruptive Behaviors: A Systematic Review

Authors: Amit Baumel, PhD; Aditya Pawar, MD; Nandita Mathur, MA; John M. Kane, MD; and Christoph U. Correll, MD

DOI Number: https://doi.org/10.4088/JCP.16r11063

List of Supplementary Material for the article

1. eAppendix 1 PsychINFO Search Terms

Disclaimer
This Supplementary Material has been provided by the author(s) as an enhancement to the published article. It has been approved by peer review; however, it has undergone neither editing nor formatting by in-house editorial staff. The material is presented in the manner supplied by the author.
Appendix

PsycInfo search terms (time limits were set through the search engine’s platform)

(Conduct OR CD OR behavior* OR behaviour* OR Oppositional OR defiant OR ODD OR anger OR aggressi* OR discipline* OR undiscipline* OR Impulse Control Disorder OR Impulse Control Disorders OR attention deficit OR attention-deficit OR attention-deficit-disorder OR ADHD OR hyperactiv* OR overactiv* OR inattent*) AND

(online* OR computer* OR internet* OR video* OR web-based OR website* OR mobile* OR smartphone* OR text-messaging OR texting OR sms OR digital* OR tech* OR ehealth OR e-health OR mhealth OR m-health) AND

(parent*) AND

(program OR educat* OR psychoeducat* OR train* OR self-training OR guid* OR self-guided OR skill* OR manag* OR therap* OR psychotherapy* OR treat* OR interven* OR self-help OR self-directed)