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ABSTRACT
Objective: To explore brain wave changes associated with 
cranial electrotherapy stimulation (CES) among subjects 
receiving psychiatric care.

Methods: Quantitative electroencephalogram data were 
obtained before and after a 20-minute session of CES. The 
investigators recruited active-duty military subjects from 
Walter Reed National Military Medical Center’s Psychiatry 
Continuity Service, Bethesda, Maryland. Fifty subjects 
participated in this prospective, convenience sample study 
from August 2016 through March 2017. The main outcome 
measures were changes in brain wave activity and the 
Subjective Units of Distress Scale.

Results: The typical subject was mildly depressed and had 
severe trauma-related symptoms and sleep problems. 
There was a significant increase (P = .000) in the higher 
beta frequencies (18–21 Hz, 21–33 Hz, and 33–48 Hz) and 
a strong effect (with the Cohen d around 1.5) immediately 
following the 20-minute CES. Ten minutes after CES, slower 
wave activity (4–8 Hz and 8–12 Hz) significantly decreased 
(P < .05), while higher beta wave activity (13–15 Hz, 18–21 Hz, 
and 21–33 Hz) increased. A strong effect (with the Cohen d 
around 1.5) persisted in the beta brain wave bands 18–21 Hz 
and 21–33 Hz.

Conclusions: Brain wave measurements taken immediately 
after the 20-minute CES session showed a significant and 
strong effect in the beta region, suggesting an increase in 
mental alertness, focus, and concentration. Ten minutes after 
the CES session, an even more marked change in brain wave 
activity occurred. The significant and strong effect in the 
beta region persisted but was joined by a reduction in slower 
wave activity, indicating an increase in mental alertness.
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Cranial electrotherapy stimulation (CES) is a noninvasive 
intervention marketed by manufacturers for the treatment 

of pain, insomnia, and emotional disorders such as depression and 
anxiety. Devices differ in terms of such fundamental variables as 
electrode placement, frequency ranges, and stimulation patterns, 
all of which compound the difficulties researchers confront 
when investigating the efficacy of CES. Despite these obstacles, 
investigators continue efforts to examine the efficacy and putative 
mechanism of actions for CES as a nonpharmacologic treatment.1

As a potential therapeutic modality, CES relies in part on 
a long history of clinicians using both electricity and magnets 
for various medical treatments. Modern examples include 
electroconvulsive therapy, transcranial magnetic stimulation, 
and deep-brain stimulation, all of which are best reserved for 
individuals with treatment-resistant depression and other severe, 
chronic psychiatric disorders.2–4 Efficacy aside, these treatments 
have significant limitations in terms of cost, training, and side 
effects, which are major obstacles to widespread availability.5

CES is microcurrent therapy: a less intensive version of 
transcranial electrical stimulation, requiring less training and 
exposing the recipient to fewer side effects. Modern CES can trace 
its development to the 1970s when early efforts to standardize 
the procedure resulted in 2 earlobe-attached electrodes, the 
delivery of microamperage, and a 20-minute treatment duration. 
The combination of electrodes and their placement, amount of 
microamperage, waveform characteristics, duration of exposure, 
and type of stimulation together constitute the definition of a CES 
dose. In 1979, the US Food and Drug Administration recognized 
CES as class III devices for the treatment of anxiety, depression, 
and insomnia. Since that time, manufacturers have brought new 
devices to the commercial market with different dosing criteria.6

Dosing parameters are critical variables in determining the 
potential value of CES. Perhaps the most fundamental issue 
is whether ear electrode placement and pulsed microcurrent 
stimulation actually penetrate the skull and reach deeper-lying 
brain regions; a question affirmatively answered through a 
computer-based modeling study.7

A review8 of published literature cited improvement in 
anxiety, depression, and insomnia as the result of microcurrent-
induced changes in the neurophysiology of the brain. Researchers 
reported the effectiveness of CES for anxiety, depression, and 
insomnia through randomized, double-blind, sham-controlled 
designs.9–11

Aside from possible changes in CES-induced neurotransmitter 
levels, another line of inquiry explored by investigators and the 
subject of this research involves variations in brain wave activity 
as a consequence of the microcurrents. Among presumably 
healthy volunteers, a 20-minute session of CES resulted in an 

https://clinicaltrials.gov/show/NCT03298308
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increase in alpha wave activity and decreased delta and theta 
waves with subjective reports of mental clarity.12 In another 
small study13 of healthy individuals, investigators reported 
a decrease in the alpha brain wave’s median frequency and 
the beta brain wave’s power band.

In this study, we examined brain wave changes associated 
with CES among subjects receiving psychiatric care. We 
hypothesized that CES would decrease subjective reports of 
anxiety by increasing alpha wave activity or paradoxically be 
interpreted as anxiolytic by an increase in beta wave activity, 
favorably improving concentration, focus, and mental acuity. 
Walter Reed National Military Medical Center’s Institutional 
Review Board approved this prospective study. Trial 
registration information is available from ClinicalTrials.gov 
(identifier NCT03298308).

METHODS

This study was conducted from August 2016 through 
March 2017 among active-duty service members receiving 
treatment at the Psychiatry Continuity Service, Walter Reed 
National Military Medical Center in Bethesda, Maryland. 
The Psychiatry Continuity Service is an outpatient partial 
hospital program staffed by a group of multidisciplinary 
clinicians and provides intensive care for all psychiatric 
disorders requiring this level of treatment.14

Subjects supplied quantitative electroencephalogram 
(qEEG) data using the NeuroSky MindSet (San Jose, 
California), a wireless single-channel dry electrode device 
processing research-grade electrical activity from the 
Fp1 (frontal scalp, position 1 location).15 NeuroSky’s 
ThinkGear ASIC Module processes the brain’s electrical 
activity and reports EEG values and signal quality.16,17 Its 
qEEG data acquisition offers convenience, reliability, and 
reproducibility.18

The investigators analyzed the qEEG data using the 
SmartMind Research Kit (BrainTrain, North Chesterfield, 
Virginia), which incorporates software bandpass filters 
and minimizes artifacts from eye and muscle movement. 
SmartMind reports the mean and standard deviation in 
microvolts for each sampled brain wave frequency for a user-
defined period of time.19,20

Subjects received CES from the Alpha-Stim AID 
(Electromedical Products International, Mineral Wells, 
Texas). Through ear clip electrodes, the Alpha-Stim AID 
delivers 0–500 microamperes adjustable in 50-microampere 
increments at a frequency of 0.5 Hz (pulses per second) 

combined with a constant 0.4 Hz, producing a mean pulse 
repetition frequency rate of 0.8 Hz, with bipolar asymmetric 
rectangular waves at a 50% duty cycle repeating periodically 
at 10-second intervals.21

Subjects received an orientation on use of the equipment 
after providing written consent. The subjects placed the 
qEEG device on their head with their eyes open and their 
head resting against a wall in a quiet room for the duration of 
the experiment. An investigator assured proper positioning 
of the CES ear clips and then adjusted the microamperage 
to the point of mild subjective discomfort, then reduced the 
microamperage to eliminate that sensation, which replicates 
the process performed in clinical practice. Subjects received 
CES for 20 minutes. We recorded 30-second measurements 
of brain wave activity at baseline immediately preceding 
CES, immediately after the 20-minute CES, and 10 minutes 
after CES.

In addition to the brain wave measurements, just 
before and after CES, study participants completed 
the Subjective Units of Distress Scale.22 Baseline self-
assessment instruments included the Alcohol Use Disorders 
Identification Test (AUDIT),23 PTSD Checklist for DSM-5 
(PCL-5),24 Pittsburgh Insomnia Rating Scale (PIRS),25 Zung 
Self-rating Anxiety Scale (SAS),26 and Zung Self-rating 
Depression Scale (SDS).27 For purposes of screening clinical 
conditions, the following thresholds apply: AUDIT ≥ 8, 
PCL-5 ≥ 33, PIRS ≥ 21, SAS ≥ 45, and SDS ≥ 45.

Data were studied through correlations, independent 
samples t test, paired samples t test, frequencies, and 
descriptive analyses using SPSS version 22.

RESULTS

Fifty subjects participated in this study; most were male 
(n = 34/50, 68%), enlisted service members (n = 39/50, 78%) 
between the ages of 21 and 40 years (n = 37/50, 74%). The 
typical subject was mildly depressed and had severe trauma-
related symptoms and sleep problems (Table 1).

There was a significant difference in the subjective units 
of distress before CES (n = 50, mean = 4.12, SD = 2.12) and 
after CES (n = 50, mean = 3.26, SD = 2.19, P = .000, Cohen 
d = 0.4). Microamperage during CES ranged between 0.5 
and 5.0 (n = 50, mean = 3.28, SD = 0.98).

In terms of brain wave changes, there was a significant 
increase (P = .000) in the higher beta frequencies (18–21 
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s ■■ Cranial electrotherapy stimulation (CES) is easily 

administered in the typical office or hospital setting.

■■ CES is a nonpharmacologic treatment alternative—an 
option to consider when other approaches have not 
achieved optimum results.

■■ On the basis of the study findings, CES may improve 
concentration and reduce distractibility.

Table 1. Self-Test Scores for 50 Subjects
Test Mean SD
AUDIT 4.3 5.1
SDS 45.7 9.9
SAS 37.7 12.6
PCL-5 46.8 20.7
PIRS 38.0 12.4
Abbreviations: AUDIT = Alcohol Use Disorders 

Identification Test, PCL-5 = PTSD Checklist 
for DSM-5, PIRS = Pittsburgh Insomnia Rating 
Scale, SAS = Zung Self-rating Anxiety Scale, 
SDS = Zung Self-rating Depression Scale.

https://clinicaltrials.gov/show/NCT03298308
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Hz, 21–33 Hz, and 33–48 Hz) and a strong effect (with the 
Cohen d around 1.5) immediately following the 20-minute 
CES (Table 2).

Ten minutes after CES, slower wave activity (4–8 Hz and 
8–12 Hz) significantly decreased, while higher beta wave 
activity (13–15 Hz, 18–21 Hz, and 21–33 Hz) increased. A 
strong effect (with the Cohen d around 1.5) persisted in the 
beta brain wave bands 18–21 Hz and 21–33 Hz (Table 2).

There was a direct correlation between the amount of 
microamperage delivered and brain wave activity between 
13–15 Hz (n = 50, r = 0.27, P = .05) and 18–21 Hz (n = 50, 
r = 0.33, P = .02). Age and sex did not correlate with any brain 
wave changes.

DISCUSSION

We explored acute brain wave changes associated with 
CES in a manner specifically designed to reduce external 
variables that might affect the results. At the same time, 
subjects received CES with the microamperage adjusted as in 
clinical practice. In sham-controlled studies,10 the electrical 
current is not adjusted, leaving the clinical relevance of 
this approach unanswered. Findings from this study would 
suggest that variations in the microamperage predominately 
affect midrange beta waves.

Brain wave activity was grouped into 5 categories on the 
basis of their respective frequencies: alpha (8–12 Hz), theta 
(4–8 Hz), beta (13–15 Hz, 15–18 Hz, 18–21 Hz, and 21–33 
Hz), delta (0–3.5 Hz), and gamma (33–48 Hz). Alpha waves 
correlate with a relaxed mental state, theta waves correlate 
with drowsiness, beta waves correlate with increased 
attention and cognition, delta waves may occur while awake 
but are more prominent in deep sleep, and gamma waves 
correlate with global consciousness and synchronized 
neuronal activity.28,29 The frequency range of 13–15 Hz is 
a transition phase with functional elements of both mental 
tranquility and alertness, which overlaps slightly with the 
next frequency range.30 The progression from the slow-
frequency delta waves to the high-frequency gamma waves 
represents increasing levels of mental acuity in the broadest 
and simplest description of functional activity.

Brain wave measurements taken immediately after the 
20-minute CES session showed a significant increase and 
strong effect size in the beta region, suggesting an increase 
in mental alertness, focus, and concentration.

An even more marked change in brain wave activity 
occurred 10 minutes after the CES session. The significant 
increase and strong effect size in the beta region persisted but 
was joined by a reduction in slower wave activity, indicating 
an increase in mental alertness.

Participants in this study subjectively reported a significant 
reduction in distress following the CES session. This finding 
raises the possibility that the subjective assessment of stress 
reduction following CES may be related to an increase in beta 
wave activity. Improved mental focus and a corresponding 
decrease in distraction may be a welcome relief among 
individuals with overlapping anxiety, depression, and trauma 
symptoms as reflected in this study group.

This study was designed to balance the actual clinical 
use of CES with scientific rigor. As in clinical practice, the 
micoamperage of CES was tailored for each subject. On the 
other hand, to minimize distractions we conducted the study 
in a quiet office, specifically limited all communication, 
required that the subjects keep their eyes open, and 
minimized the time span between qEEG measurements in 
an effort to avoid other confounding variables affecting brain 
wave activity.

We acknowledge that balancing clinical use and scientific 
rigor is not perfect. This open-label study exposed the 
subjects to limited interactions, such as positioning the brain 
wave–sensing headset, with the investigators. While other 
factors such as the subjects’ awareness of the stimulation 
phase of CES may impose a potential bias on the study’s 
results, it is at least partially mitigated by the number 
of subjects, the strength of the findings, and the value in 
determining the role of microamperage dosing.

With these limitations in mind, the findings of this study 
would benefit from replication with a larger study group 
among subjects with similar behavioral profiles. Future 
research could also further explore the anxiolytic effects of 
increasing beta wave activity among individuals with varying 
degrees of mental distraction.

Table 2. Changes in Brain Wave Activity in 50 Subjects After 
20-Minute Cranial Electrotherapy Stimulation (CES-20) and 
10 Minutes After Stimulation (CES-10)a

Frequency Mean SD P Value Cohen d
0.5–3.5 Hz

Baseline 9.67 6.13
CES-20 13.25 7.73 .007** 0.51
CES-10 10.38 6.74 .545 0.11

4–8 Hz
Baseline 10.75 5.44
CES-20 11.81 6.32 .337 0.18
CES-10 8.64 3.81 .014** 0.45

8–12 Hz
Baseline 6.75 2.67
CES-20 7.49 4.01 .226 0.22
CES-10 5.97 2.37 .049* 0.31

13–15 Hz
Baseline 4.86 2.44
CES-20 5.34 3.13 .279 0.17
CES-10 5.97 2.37 .002** 0.46

15–18 Hz
Baseline 5.11 2.79
CES-20 4.90 2.93 .663 0.08
CES-10 3.86 1.91 .001** 0.52

18–21 Hz
Baseline 1.81 0.74
CES-20 4.45 2.30 .000** 1.55
CES-10 3.89 1.70 .000** 1.59

21–33 Hz
Baseline 3.65 1.97
CES-20 8.76 4.47 .000** 1.48
CES-10 8.23 4.08 .000** 1.43

33–48 Hz
Baseline 3.12 1.63
CES-20 7.34 3.71 .000** 1.47
CES-10 2.95 1.13 .387 0.12

aStatistics are in comparison with baseline. P values are 2-tailed.
*P < .05.  **P < .01.
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