It is illegal to post this copyrighted PDF on any website. Kratom (Mitragyna speciosa): Friend or Foe?

Roopa Sethi, MD^{a,b,*}; Nguyen Hoang, BS^b; Dheepthi Arakonam Ravishankar, MBBS^b; Megan McCracken, BS^c; and Ann M. Manzardo, PhD^b

ABSTRACT

Increased use of the opioid-related plant kratom as an alternative treatment for opioid withdrawal symptoms has raised concerns regarding its potential for abuse and severe adverse effects. A review of the literature was performed to characterize kratom's pharmacology, clinical efficacy, and adverse effects to increase understanding and evaluate potential use as an alternative treatment for opioid dependence. Kratom use initiated as self-medication for an opioid use disorder or pain syndrome in the absence of effective alternatives is associated with a risk of kratom dependence, withdrawal, and life-threatening toxicity. The potential for a serious adverse reaction should discourage unregulated use of kratom products.

Prim Care Companion CNS Disord 2020;22(1):19nr02507

To cite: Sethi R, Hoang N, Ravishankar DA, et al. Kratom (*Mitragyna speciosa*): friend or foe? *Prim Care Companion CNS Disord*. 2020;22(1):19nr02507.

To share: https://doi.org/10.4088/PCC.19nr02507 © Copyright 2020 Physicians Postgraduate Press, Inc.

^aDepartment of Addiction Psychiatry, University of Kansas Health System, Kansas City, Kansas

^bDepartment of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, Kansas

^cSchool of Medicine, University of Kansas Medical Center, Kansas City, Kansas

*Corresponding author: Roopa Sethi, MD, Department of

Psychiatry and Behavioral Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 4015, Kansas City, KS 66160 (rsethi@kumc.edu).

ratom is a psychoactive substance derived from the Mitragyna speciosa plant species native to Thailand and Southeast Asia,¹ with stimulant-like effects at lower doses and opioid-like effects at higher doses.^{2–4} It has gained popularity in the United States as an inexpensive alternative for self-withdrawal treatment from opiates. Kratom is sold as capsules, tablets, loose raw leaves, gum, and powder through online vendors and at local smoke shops, bars, and gas stations. It is sold as kratom, mitragyna, and other street names such as ketum, thom, biak, and thang.^{2,3,5-7} Kratom is also available as green powder sold with the label "Not for human consumption."7 Kratom has been used with O-desmethyltramadol, which is marketed as krypton,^{3,8} and may be added to synthetic cannabinoids such as K2 and spice.^{3,9} Kratom does not appear in regular urine drug screens and may be undetected during routine screening of acute drug intoxication, overdose, or withdrawal, as careful history is required for identification.^{2,3} There has been little scientific investigation to characterize kratom's pharmacology, mechanism of action, side effects, or risk of use. Kratom has been designated as illegal in several countries. It remains unrestricted in the United States but is listed as a "drug of concern" by the US Drug Enforcement Administration. This narrative review provides a survey of literature related to kratom's clinical profile based on available empirical evidence and case reports.

METHODS

A literature search was performed using 4 databases (MEDLINE, PubMed, CINAHL, and Google Scholar) to identify English-language articles published from January 2000 to March 2019. Search terms were *kratom*, *opioid withdrawal*, *opioid use disorder*, *opioid dependence*, and *mitragyna*. Studies were selected on the basis of novel information related to kratom's pharmacology, mechanism of action, clinical presentation, and adverse effects. Surveys and case reports were included given that kratom is not used clinically and the majority of kratom use is for recreational purposes. Commentaries were excluded. A total of 45 articles¹⁻⁴⁵ were included in the final review.

RESULTS

Kratom Pharmacology

The psychoactive properties of kratom are mainly attributed to mitragynine and 7-hydroxymitragynine (7-OHMG).¹⁰⁻¹² Both compounds act through g-protein–coupled signaling with partial agonist effects on μ -opioid receptors and antagonist effects on the κ - and δ -opioid receptors.^{10–12} The partial agonist activity at the μ -opioid receptor is believed to mitigate risks for respiratory

It is illegal to post this copyrighted PDF on any website.

- Kratom has gained popularity as an inexpensive and accessible alternative to manage symptoms of opioid use disorder and pain.
- Kratom use can lead to physical dependence and precipitate withdrawal symptoms with abstinence.
- Even short-term kratom use has been associated with serious medical comorbidities including hepatitis, seizures, and death.

depression in the event of overdose.¹² According to the literature,^{2,3,13–16} kratom can prevent withdrawal symptoms from opioids but also has the capacity to induce its own withdrawal symptoms. Kratom has anti-inflammatory properties and has demonstrated parasympathetic-blocking effects.³ These effects were reversible by use of naloxone, suggesting that they are mediated by opioid agonist actions.3,17

Mitragynine stimulates α_2 -adrenergic receptors proposed to accentuate its sedative, hypnotic, and analgesic effects without increasing respiratory depression. Although this synergistic effect may be considered beneficial for opioid withdrawal therapy, the profile yields a potent central nervous system depressant effect that could be dangerous when combined with other sedative and hypnotic agents, such as opioids, alcohol, benzodiazepines, muscle relaxants, and anticonvulsants.^{2,3,12,18,19} Mitragynine has additional effects on adenosine 2, dopamine, and 5-HT₇ receptors that are not fully characterized.^{12,18}

Adverse Effects of Kratom

The Centers for Disease Control and Prevention reported 660 calls to US poison control centers related to kratom use from 2010 to 2015.²⁰ The number of calls increased from 26 in 2010 to 263 in 2015, with 496 calls received from health care providers seeking guidance. Isolated kratom use was noted in 428 of these cases.²⁰ Kratom use is reported in combination with other substances most commonly cited as benzodiazepines, narcotics, and acetaminophen.^{20,21}

There are several published case reports^{18,26-31,41-45} about the side effects and withdrawal symptoms associated with cessation of kratom use and how to successfully treat those withdrawal symptoms (Table 1). These case reports are of interest, as they can be helpful in clinical scenarios for which there is no guidance on how to treat kratom overdose and withdrawal. The most commonly reported adverse effects include nausea, vomiting, tremor, diaphoresis, tachycardia, hypertension, and elevated creatinine phosphokinase concentrations^{3,16,22–25} (Table 2). Treatment for adverse effects includes use of intravenous fluids, sedatives, benzodiazepines, antiemetics, and, in rare cases, antihypertensives and oxygen.³ A total of 36 deaths have been reported with illicit use of kratom-containing products. Nine deaths have been linked to krypton use (kratom and O-desmethyltramadol) and 1 death to kratom combined with propylhexedrine.³

and intrahepatic cholestasis with kratom. The first reported case²⁶ of kratom-induced hepatoxicity was in 2011 describing a 25-year-old man who developed abdominal pain and jaundice 10 days after use of kratom. His symptoms resolved after cessation of kratom intake.²⁶ Swogger et al²² reported 2 separate cases: a female who developed acute jaundice following consumption of kratom and a male who presented with acute hepatitis after 2 weeks of kratom use. Other examples include a 58-year-old chronic kratom user who developed jaundice and hepatotoxicity,²⁷ a 21-year-old man with 1-month history of kratom use who presented with hepatosplenomegaly,²⁸ a 32-year-old man with cholestatic hepatitis after 2 weeks of kratom use,²⁹ and a 38-year-old man with an acute onset of kratom-induced hepatitis.³⁰ There are also case reports^{31,32} that document seizures as an adverse effect of kratom use.

Kratom Withdrawal Symptoms After Cessation of Use

Prolonged use of kratom is associated with physiologic dependence capable of precipitating withdrawal symptoms with decreased use or abstinence. The literature suggests that withdrawal symptoms from cessation of kratom use are similar to opioid-like withdrawal symptoms (Table 3).^{14,33-37} These opioid-like withdrawal symptoms were mitigated with naloxone,3 clonidine,33,34 and buprenorphine.35,36

Several case reports document withdrawal symptoms after kratom cessation such as severe muscle spasms, myalgia, chronic pain, sleeping difficulty, and intense cravings (Table 4). Many individuals reported that these symptoms and the intense craving made them unable to discontinue use of kratom.^{13,15} Some case reports^{3,33–36} describe successful treatment with different medications. Buresh³⁶ presented a case series featuring successful treatment of kratom dependence in 2 patients with the initiation of buprenorphine treatment. Khazaeli et al³⁵ reported another case of a patient with opioid use disorder who self-medicated with kratom and became addicted. Her kratom withdrawal symptoms were successfully treated with buprenorphine. The authors³⁵ recommend divided dosing of buprenorphine to maximize analgesia for patients who have used kratom to manage pain. Diep et al³⁷ reported successful treatment of kratom withdrawal with associated seizures using buprenorphine. Mackay and Abrahams¹⁴ illustrated the case of a mother and neonate whose kratom withdrawal symptoms were successfully treated with morphine. Galbis-Reig³⁴ described successful treatment of kratom withdrawal symptoms in a female patient with clonidine and hydroxyzine. Stanciu et al³³ presented a case series of 2 patients successfully treated for kratom withdrawal with clonidine treatment.

Ecologic Factors Influencing Kratom Use

Most human studies^{15,16,18,22,23,25} on kratom utilize observational survey designs and originate in Malaysia and Thailand, with very few surveys from the United States (Table 5). Vicknasingam et al¹⁵ conducted an anonymous survey to assess patterns of ketum (kratom) use in Malaysia and effects

Clinical Points

MO

Case Report	Analysis Methods and Tests	Kratom Use Pattern	Treatment
Boyer et al, 2008 ¹⁸ Male, age 43 y, admitted for evaluation of generalized tonic-clonic seizure	Urine toxicology screening, CT, and MRI	Kratom tea 4 times a day for 3.5 y	Buprenorphine/naloxone 16 mg/d
Kapp et al, 2011 ²⁶ Male, age 25 y, intrahepatic cholestasis	AST: 66 U/L, ALT: 94 U/L, ALP: 173 U/L, total bilirubin: 30.9 $\mu mol/L$, urine mitragynine detected by GC-MS	Intake dose: 4.6–7 g/d to 8.6–14 g/d 2 weeks before symptom onset	Self-resolution of symptoms
Dorman et al, 2015 ²⁷ Male, age 58 y, cholestatic hepatitis	AST: 49 U/L, ALT: 106 U/L, ALP: 790 U/L, total bilirubin: 25.6 μmol/L, direct bilirubin: 17.1 μmol/L	Ingestion of 1 tablespoon of powder daily for 3 months	Conservative management
Griffiths et al, 2018 ²⁸ Male, age 21 y, hepatomegaly	AST: 294 U/L, ALT: 319 U/L, ALP: 193 U/L, total bilirubin: 2.86 µmol/L; urine drug screen positive for cannabis; abdominal ultrasound and MRI: hepatosplenomegaly	12 kratom capsules daily (6 g) for 2 wk	Conservative management
Tayabali et al, 2018 ²⁹ Male, age 32 y, hepatitis	ALT: 365 U/L, AST: 222 U/L, ALP: 391 U/L, total bilirubin: 6.3 μmol/L; serum mitragynine and 7-OHMG	60 tablets over 1 wk	NAC 150 mg/kg/h; patient developed anaphylaxis and treatment was stopped
Riverso et al, 2018 ³⁰ Male, age 38 y, intrahepatic cholestasis	AST: 220 U/L, ALT: 389 U/L, ALP: 304 U/L, total bilirubin: 5.1 µmol/L; liver biopsy: intrahepatic liver injury	Unspecified pattern	Intravenous fluids and kratom cessation
Nelsen et al, 2010 ³¹ Male, age 64 y, seizure	Urine drug testing, mitragynine urine concentration: 167 ng/mL; CT and MRI	Unspecified dose	Lorazepam 2 mg and phenytoin 1 gm
Neerman et al, 2013 ⁴¹ Male, age 17 y, found deceased	Urine mitragynine level:167 ng/mL, LC-MS, autopsy	Empty bottle of kratom found on scene	Cause of death "accidental," lack of confirmed kratom use
Fernandes et al, 2019 ⁴² Male, age 52 y, intrahepatic cholestasis	AST: 48 U/L, ALT: 62 U/L, ALP: 259 U/L, total bilirubin: 22.8 μmol/L	1 teaspoon of crushed leaves (–1.5 g/d)	Conservative treatment with ursodeoxycholic acid and kratom abstinence
Mousa et al, 2018 ⁴³ Male, age 31 y, acute hepatitis	AST: 191 U/L, ALT: 578 U/L, ALP: 191 U/L, total bilirubin: 2.2 µmol/L	Kratom tea for 2 wk	NAC
Osborne et al, 2019 ⁴⁴ Male, age 47 y, hepatitis	AST: 114 U/L, ALT: 324 U/L, ALP: 148 U/L, total bilirubin: 6.1 μ mol/L, direct bilirubin: 5.1 μ mol/L, creatinine: 17.1 μ mol/L; urine protein and urobilinogen	Kratom capsule for 3 wk	Conservative management
Palasamudram Shekar et al, 2019 ⁴⁵ Male, age 36 y, intrahepatic cholestasis	AST: 1,347 U/L, ALT: 3,717 U/L, hyperkalemia, acute kidney injury, urine sample tested positive for 500 ng/mL of 7-hydroxymitragynine	Unspecified pattern	Conservative management
Abbreviations: AI P=alkaline phosphatas	se. Al T=alanine aminotransferase. AST=aspartate aminotra	nsferase, $CT = computed top$	mography GC-MS=gas

chromatography-mass spectrometry, LC-MS = liquid chromatography-mass spectrometry, MRI = magnetic resonance imaging, NAC=N-acetylcysteine

Table 2. Summary of Adverse Effects of Kratom Ingestion

General	Nausea, ^{3,16,22–24} vomiting, ^{3,22–24} constipation, ^{23–25} anorexia, ²⁴ weight loss, ²⁴ small black feces, ²⁴ fatigue, ²⁵ sweating ²²	
Endocrine	Hypothyroidism	
Gastrointestinal	Dry mouth, ²⁴ nausea, ^{3,16,22–24} vomiting, ^{3,22–24} constipation, ^{23–25} small black feces, ²⁴ diarrhea ¹⁶	
Hepatic	Jaundice, itching, ²² intrahepatic cholestasis ^{24,26}	
Neurologic	Dizziness, ^{16,22,23,25} irritability, ^{23,25} poor concentration, ²⁵ impaired memory, ²⁵ decreased sexual drive, ²⁵ tremors, ²⁵ headaches, ^{16,25} seizure- like activity, ^{16,18,24,31,32,39} coma, ^{24,31} numbness ²²	
Psychiatric	Visual alterations, ²² social withdrawal, ²⁵ psychosis	
Cardiac and pulmonary	Hypertension, ^{16,23} heart palpitations, ^{16,23} shortness of breath ²³	
Altered consciousness ⁴³		
Death ^{3,39,40}		

reported by current users. A total of 136 respondents with a mean age of 38 years were stratified into short-term (53%) and long-term (47%) kratom users. Both groups reported using kratom to reduce addiction to other drugs and use of more expensive opioids (90.4%) and to treat symptoms of opioid withdrawal (83.8%). They reported benefits including

increased propensity for hard work, heightened sexual desire, increased appetite, and reduced heroin withdrawal symptoms. Side effects from kratom included weight loss, dehydration, constipation, tiredness, and hyperpigmentation of cheeks. Seventy-eight percent of respondents reported symptoms of fatigue, lacrimation, rhinorrhea, insomnia, diaphoresis, and nerve pain when they stopped taking kratom.¹⁵ This finding contrasts that of a prior study²⁵ in Thailand of an adult (mean age = 45 years) population with no evidence of previous drug use that identified increased physical endurance as a key motivational influence for use. A second survey¹³ in Malaysia evaluated the frequency of dependence, cravings, and withdrawal symptoms in males taking kratom for longer than 6 months. Of the 293 respondents, clinically meaningful dependence was identified in 100% of respondents, with 55% reporting severe and 45% reporting moderate dependence. Sixty-five percent of respondents experienced mild withdrawal symptoms, while 35% reported moderate-to-severe symptoms. Further, significant cravings for kratom were reported in 77% of kratom users, while 23% had only mild cravings.¹³ The consensus findings identified high rates of dependence associated with kratom use but limited impact on social

Table 3, Summary	v of Case Repo	rts of Kratom Withdrawal	
Table St Sammar	, or case nepo		

Case Report	Analysis and Withdrawal Symptoms	Treatment of Withdrawal Symptoms	Success/Failure
Mackay and Abrahams, 2018 ¹⁴ Female, age 29 y, and infant treated for withdrawal	 Diaphoresis, rhinorrhea, piloerection, anxiety, nausea Postpartum symptoms of irritability, jitteriness, feeding intolerance Infant neonatal abstinence syndrome 	Mother: oral morphine 10 mg 3 times/d Infant: morphine in neonatal intensive care unit	Positive response with resolution of withdrawal symptoms
Stanciu et al, 2019 ³³ Patient 1: female, age 26 y, 1.5-y history of kratom abuse Patient 2: male, age 27 y, 2-y history kratom use	 Urine toxicology Metabolic panel and ECG Patient 1: presented to ED with restlessness, generalized body aches, anxiety, suicidal thoughts, tachycardia, fever Patient 2: presented to ED with suicidal thoughts, hopelessness and helplessness, auditory hallucinations 	Patient 1: clonidine 0.1 mg every 2 h and gabapentin 300 mg 3 times/d Patient 2: clonidine 0.1 mg 3 times/d	Positive response to clonidine initially
Galbis-Reig, 2016 ³⁴ Female, age 37 y, 2-y history of kratom use, withdrawal after 6 mo of use	 Urine toxicology by immunoassay LC-MS Myalgia, bone pain, blurred vision to pupillary dilatation 	Symptom-triggered clonidine therapy 0.1–0.2 mg every 2 h and hydroxyzine 50 mg every 6 h for 3 d; discharged home with naltrexone 50 mg/d oral	Positive response to clonidine
Khazaeli et al, 2018 ³⁵ Female, age 52 y, 9-y history of opiate use disorder, kratom use for 9 mo	Urine drug screen for mitragynine 48 d after last use of kratom	Buprenorphine initiated with resolution of opioid withdrawal and cravings	Positive response to buprenorphine
Buresh, 2018 ³⁶ Patient 1: female, age 60 y, with chronic pain Patient 2: male, age 57 y, 1-y history of kratom use	 Urine toxicology screen Patient 1: irritability, rhinorrhea Patient 2: anxiety, edginess, leg shaking, diazepam self-medication 	Patient 1: treated with buprenorphine- naloxone (4-1 mg) with resolution of pain and no relapse Patient 2: home initiation of buprenorphine-naloxone (8-2 mg); later started on buprenorphine 24 mg	Positive response to buprenorphine with resolution of pain symptoms
Diep et al, 2018 ³⁷ Male, age 24 y, history of opiate use disorder, kratom 600 mg/d, kratom seizure, hypothermia	 Urine drug screen for mitragynine Arterial blood gas acute respiratory acidosis ECG QT interval prolongation, sinus bradycardia White blood cell count elevated Creatinine kinase elevated (rhabdomyolysis) 	Started on lorazepam for seizures Day 13: buprenorphine 2 mg/d and hydroxyzine 50 mg/d followed by long-term maintenance	Positive response to buprenorphine
Abbreviations: ECG = electrocardiogra	am, ED = emergency department, LC-MS = liquid chrom	atography-mass spectrometry.	

Table 4. Summary of Reported Withdrawal Symptoms Resulting From Extended Use of Kratom

Withdrawal Symptoms	Available Treatment Options
Anxiety and agitation ^{2,3,13,14,16}	Benzodiazepines, buprenorphine
Nausea, ^{3,13,16} vomiting, ^{3,13} diarrhea, ^{3,13,16} abdominal cramps ^{3,13}	Nonopioid antidiarrheal
Muscle, body, and joint pain, ^{3,13,16} nerve pain ²⁹	Nonsteroidal pain relievers
Insomnia, ^{13,15,16} sedation, ³ fatigue ^{15,16}	Buprenorphine and clonidine
Sweating, rhinorrhea, watery eyes ^{13,15}	Buprenorphine and clonidine
Tremors, ^{13,16} ataxia, ¹⁶ dystonia ¹⁶	Buprenorphine and clonidine
Psychological restlessness, ¹³ anger, ¹³ depressed mood, ¹³ nervousness, ¹³ increased craving ¹⁵	Buprenorphine and clonidine

A qualitative analysis by Swogger et al²² described 161 individuals who submitted their own experience with kratom on the website Erowid.org. Erowid is a nonprofit organization that provides online informational resources about psychoactive substances.²² Positive experiences reported by kratom users included relaxation, euphoria, state of well-being, pain relief, and enhanced empathy. Seventeen individuals reported successful use of kratom as replacement for unwanted substance use, especially opioids. Common reported adverse effects were nausea (16%) and withdrawal symptoms (10%), though the symptoms were milder compared to opiates. Although uncommon, visual alterations and sedation were noted, but many individuals reported benefits from milder withdrawal symptoms and stimulant effects, which appeared to drive the motivational attributes associated with use. Swogger and colleagues²² concluded that kratom could potentially be used as adjunctive therapy for pain relief with less cognitive impairment and less sedation, but further research on safety and administration guidelines is needed.

A large cross-sectional online survey²³ (N = 8,049 respondents) of members of the American Kratom Association found kratom use was primarily associated with the self-treatment of acute and chronic pain and symptoms of opioid withdrawal. More than 80% of respondents reported decreased pain, increased energy, and less depressive mood with kratom. Furthermore, 49% of users stopped or reduced their use of opiates. The adverse effects most commonly reported with kratom use were nausea (13%), constipation

wehci

anv

Table 5. Summary of Observa	ational Studies of Kratom		
Study	Type of Subjects	Positive Aspects of Using Kratom	Negative Aspects of Using Kratom
Vicknasingam et al, 2010 ¹⁵ Cross-sectional survey of Malaysians	136 respondents aged 38 y 104 previous drug users; 62 were urine positive for other drugs	Reduce symptoms of opioid withdrawal, improved appetite, low cost	Withdrawal symptoms (craving, fatigue, lacrimation, rhinorrhea, sweating, insomnia, pain, discomfort in kidney area)
Trakulsrichai et al, 2013 ¹⁶ Retrospective chart review (clinical data)	Rathimbodi toxic surveillance system 2005–2009 78 kratom exposure cases Mean age of 31 y	Not available	Withdrawal symptoms (nausea, diarrhea, loss of appetite, tremors, myalgias, fatigue, ataxia, dystonia, hypotension, palpitation, diaphoresis)
Boyer et al, 2008 ¹⁸ Dataset construction of kratom mentions from drugbuyers.com posts	113,000 members aged 38 y 170 topic threads on kratom 2004–2005	Opioid replacement, inexpensive alternative to opioid analgesics and buprenorphine	None mentioned as this was an internet survey that focused on use
Swogger et al, 2015 ²² Qualitative analysis (conventional content analysis)	161 individuals submitted reports on Erowid.org between 2001 and 2012	Euphoria, relaxation, enhanced empathy, sensory enhancement	Nausea, vomiting, chills, sweating, dizziness, itching, numbness
Grundmann, 2017 ²³ Cross-sectional online survey of the American Kratom Association	Facebook page, website forums, and membership e-mails 8,049 of 10,000 respondents (80%) completed the survey	Decreased pain, increased energy, treatment of depressed mood	Side effects (nausea/vomiting: 13%, constipation: 9%, and drowsiness: 5%) Withdrawal symptoms (anxiety)
Assanangkornchai et al, 2007 ²⁵ Cross-sectional survey of rural Thailand villagers	Men: n = 350, women: n = 83 149 long-term regular users 168 occasional users 116 nonusers	Feeling happy, euphoria, mood elevation, sleep regulation	Constipation, tremors, headaches, decreased sexual drive, dizziness, irritability

is illegal to post this copyrighted Pl

(9%), and dizziness or drowsiness (5%). The study²³ also identified a dose-dependent relationship with both beneficial and adverse effects of kratom.

Other reports^{3,38} have documented therapeutic use of kratom to prevent opioid withdrawal. One report³⁸ presented the case of a 53-year-old man with a history of opioid use disorder recently tapered off methadone after 6 years of maintenance therapy who started using kratom to control his withdrawal symptoms and prevent a relapse. Another published report³ described use of kratom to treat 2 individuals with a long history of heroin use. One patient did not have access to methadone and the other patient had persistent withdrawal symptoms despite methadone treatment. Both patients reported improvement of their symptoms after they started using kratom.³

CONCLUSION

The increasing popularity of kratom has been accompanied by dependence, adverse effects, and withdrawal symptoms following cessation of use. Use may be partly attributed to increasing costs of opioids, the era of the current opioid epidemic and reduction in prescriptions of opiates, online availability, and insufficient public awareness of potential side effects and propensity to experience withdrawal symptoms on cessation. One weakness of our analysis is the inclusion of anecdotal reports of kratom obtained through survey and analysis of online forums, which put the findings at risk for potential bias and other confounding factors.

Kratom's unique dual property as an opioid with stimulant properties makes it a potential alternative in the management of opioid withdrawal symptoms. Review of the literature suggests a high potential for abuse and dependence with kratom that may outweigh the potential benefits. The risk of increased central nervous system depression with concomitant sedative hypnotics and alcohol makes it a drug of concern. Also, reports^{26–30,42,43} have shown an association between liver injury and kratom ingestion, supporting the need for controlled trials to further evaluate the safety and efficacy of kratom.

Because of the rise in kratom use in Western countries, medical providers should be aware of the effects of kratom. Physicians should also be aware of the withdrawal symptoms and need for treatment. Although data on kratom are of low quality, the findings from this study may provide a better understanding of the effects of kratom consumption in humans. More susceptible populations including those with compromised liver function or history of prior addiction as well as young adults and adolescents should be cautious when using this unregulated substance.

Submitted: June 28, 2019; accepted September 30, 2019.

Published online: January 30, 2020. Potential conflicts of interest: None. Funding/support: None.

REFERENCES

- 1. Grewal KS. The effect of mitragynine on man. *Br J Med Psychol*. 1932;12(1):41–58.
- Prozialeck WC, Jivan JK, Andurkar SV. Pharmacology of kratom: an emerging botanical agent with stimulant, analgesic and opioid-like effects. J Am Osteopath Assoc. 2012;112(12):792–799.
- White CM. Pharmacologic and clinical assessment of kratom. *Am J Health Syst Pharm.* 2018;75(5):261–267.
 Babu KM, McCurdy CR, Boyer EW. Opioid

receptors and legal highs: salvia divinorum and

kratom. Clin Toxicol (Phila). 2008;46(2):146-152.

- MacLaren E. The effects of kratom use. drugabuse.com website. www.drugabuse. com/library/ the-effects-of-kratom-use/. Accessed December 17, 2019.
- Kratom. US Drug Enforcement Administration website. https://www.dea.gov/factsheets/ kratom. Accessed December 17, 2019.
- National Institute on Drug Abuse. Monitoring the future study: trends in prevalence of various drugs. https://www.drugabuse.gov/ trends-statistics/monitoring-future/

Sethi et al It is illegal to post this copyrighted PDF on any website monitoring-future study-trends-in post this copyrighted by Crawford JJ. 19. Giovannitti JA Jr, Thoms SM, Crawford JJ.

- prevalence-various-drugs. Accessed December 17, 2019.
- 8. Arndt T, Claussen U, Güssregen B, et al. Kratom alkaloids and O-desmethyltramadol in urine of a "Krypton" herbal mixture consumer. *Forensic Sci Int.* 2011;208(1–3):47–52.
- Logan BK, Reinhold LE, Xu A, et al. Identification of synthetic cannabinoids in herbal incense blends in the United States. *J Forensic Sci.* 2012;57(5):1168–1180.
- 10. Farrell M. Opiate withdrawal. *Addiction*. 1994;89(11):1471–1475.
- Matsumoto K, Horie S, Takayama H, et al. Antinociception, tolerance and withdrawal symptoms induced by 7-hydroxymitragynine, an alkaloid from the Thai medicinal herb *Mitragyna speciosa. Life Sci.* 2005;78(1):2–7.
- Kruegel AC, Grundmann O. The medicinal chemistry and neuropharmacology of kratom: a preliminary discussion of a promising medicinal plant and analysis of its potential for abuse. *Neuropharmacology*. 2018;134(pt A):108–120.
- 13. Singh D, Müller CP, Vicknasingam BK. Kratom (*Mitragyna speciosa*) dependence, withdrawal symptoms and craving in regular users. *Drug Alcohol Depend*. 2014;139:132–137.
- Mackay L, Abrahams R. Novel case of maternal and neonatal kratom dependence and withdrawal. *Can Fam Physician*. 2018;64(2):121–122.
- Vicknasingam B, Narayanan S, Beng GT, et al. The informal use of ketum (*Mitragyna speciosa*) for opioid withdrawal in the northern states of peninsular Malaysia and implications for drug substitution therapy. *Int J Drug Policy*. 2010;21(4):283–288.
- Trakulsrichai S, Tongpo A, Sriapha C, et al. Kratom abuse in Ramathibodi Poison Center, Thailand: a five-year experience. J Psychoactive Drugs. 2013;45(5):404–408.
- Hassan Z, Muzaimi M, Navaratnam V, et al. From kratom to mitragynine and its derivatives: physiological and behavioural effects related to use, abuse, and addiction. *Neurosci Biobehav Rev.* 2013;37(2):138–151.
- Boyer EW, Babu KM, Adkins JE, et al. Selftreatment of opioid withdrawal using kratom (*Mitragynia speciosa* korth). *Addiction*. 2008;103(6):1048–1050.

Alpha-2 adrenergic receptor agonists: a review of current clinical applications. *Anesth Prog.* 2015;62(1):31–39.

- Anwar M, Law R, Schier J. Notes from the field: kratom (*Mitragyna speciosa*) exposures reported to poison centers—United States, 2010–2015. *MMWR Morb Mortal Wkly Rep.* 2016;65(29):748–749.
- Griffin OH, Webb ME. The scheduling of kratom and selective use of data. J Psychoactive Drugs. 2018;50(2):114–120.
- Swogger MT, Hart E, Erowid F, et al. Experiences of kratom users: a qualitative analysis. J Psychoactive Drugs. 2015;47(5):360–367.
- Grundmann O. Patterns of kratom use and health impact in the US: results from an online survey. Drug Alcohol Depend. 2017;176:63–70.
- Ulbricht C, Costa D, Dao J, et al. An evidencebased systematic review of kratom (*Mitragyna* speciosa) by the Natural Standard Research Collaboration. J Diet suppl. 2013;10(2):152–170.
- Assanangkornchai S, Muekthong A, Sam-Angsri N, et al. The use of *Mitragynine speciosa* ("krathom"), an addictive plant, in Thailand. Subst Use Misuse. 2007;42(14):2145–2157.
- Kapp FG, Maurer HH, Auwärter V, et al. Intrahepatic cholestasis following abuse of powdered kratom (*Mitragyna speciosa*). J Med Toxicol. 2011;7(3):227–231.
- Dorman C, Wong M, Khan A. Cholestatic hepatitis from prolonged kratom use: a case report. *Hepatology*. 2015;61(3):1086–1087.
- Griffiths CL, Gandhi N, Olin JL. Possible kratominduced hepatomegaly: a case report. J Am Pharm Assoc (2003). 2018;58(5):561–563.
- Tayabali K, Bolzon C, Foster P, et al. Kratom: a dangerous player in the opioid crisis. *J Community Hosp Intern Med Perspect*. 2018;8(3):107–110.
- Riverso M, Chang M, Soldevila-Pico C, et al. Histologic characterization of kratom useassociated liver injury. *Gastroenterol Res.* 2018;11(1):79–82.
- Nelsen JL, Lapoint J, Hodgman MJ, et al. Seizure and coma following kratom (*Mitragyna speciosa* korth) exposure. *J Med Toxicol*. 2010;6(4):424–426.
- Roche KM, Hart K, Sangalli B, et al. Kratom: a case of a legal high. *Clinical Toxicology*. 2008;46(7):598.

Kratom withdrawal: a systematic review with case series. *J Psychoactive Drugs*. 2019;51(1):12–18.

- Galbis-Reig D. A case report of kratom addiction and withdrawal. WMJ. 2016;115(1):49–52, quiz 53.
- Khazaeli A, Jerry JM, Vazirian M. Treatment of kratom withdrawal and addiction with buprenorphine. J Addict Med. 2018;12(6):493–495.
- Buresh M. Treatment of kratom dependence with buprenorphine-naloxone maintenance. J Addict Med. 2018;12(6):481–483.
- Diep J, Chin DT, Gupta S, et al. Kratom, an emerging drug of abuse: a case report of overdose and management of withdrawal. A A Pract. 2018;10(8):192–194.
- Sethi R, Miller KA, McAllister R. Kratom: is it the new illicit opiate on the market? *Prim Care Companion CNS Disord*. 2018;20(4):15101895.
- Bäckstrom BG, Classon G, Löwenhielm P, et al. Krypton—new, deadly internet drug: since October 2009 have nine young persons died in Sweden [article in Swedish]. *Lakartidningen*. 2010;107(50):3196–3197.
- Kronstrand R, Roman M, Thelander G, et al. Unintentional fatal intoxications with mitragynine and O-desmethyltramadol from the herbal blend krypton. *J Anal Toxicol*. 2011;35(4):242–247.
- Neerman MF, Frost RE, Deking J. A drug fatality involving kratom. *J Forensic Sci.* 2013;58(suppl 1):S278–S279.
- Fernandes CT, Iqbal U, Tighe SP, et al. Kratominduced cholestatic liver injury and its conservative management. *J Investig Med High Impact Case Rep.* 2019;7:2324709619836138.
- Mousa MS, Sephien A, Gutierrez J, et al. N-acetylcysteine for acute hepatitis induced by kratom herbal tea. Am J Ther. 2018;25(5):e550– e551.
- 44. Osborne CS, Overstreet AN, Rockey DC, et al. Drug-induced liver injury caused by kratom use as an alternative pain treatment amid an ongoing opioid epidemic. J Investig Med High Impact Case Rep. 2019;7:2324709619826167.
- Palasamudram Shekar S, Rojas EE, D'Angelo CC, et al. Legally lethal kratom: a herbal supplement with overdose potential. J Psychoactive Drugs. 2019;51(1):28–30.