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Review Article

How the Probability and Potential Clinical Significance of 
Pharmacokinetically Mediated Drug-Drug Interactions Are 
Assessed in Drug Development: Desvenlafaxine as an Example
Matthew Macaluso, DO; Alice I. Nichols, PhD; and Sheldon H. Preskorn, MD

ABSTRACT
Objective: The avoidance of adverse drug-drug interactions 
(DDIs) is a high priority in terms of both the US Food and 
Drug Administration (FDA) and the individual prescriber. 
With this perspective in mind, this article illustrates the 
process for assessing the risk of a drug (example here being 
desvenlafaxine) causing or being the victim of DDIs, in 
accordance with FDA guidance.

Data Sources/Study Selection: DDI studies for the serotonin-
norepinephrine reuptake inhibitor desvenlafaxine conducted 
by the sponsor and published since 2009 are used as 
examples of the systematic way that the FDA requires drug 
developers to assess whether their new drug is either capable 
of causing clinically meaningful DDIs or being the victim of 
such DDIs. In total, 8 open-label studies tested the effects of 
steady-state treatment with desvenlafaxine (50–400 mg/d) 
on the pharmacokinetics of cytochrome (CYP) 2D6 and/or 
CYP 3A4 substrate drugs, or the effect of CYP 3A4 inhibition 
on desvenlafaxine pharmacokinetics. The potential for DDIs 
mediated by the P-glycoprotein (P-gp) transporter was 
assessed in in vitro studies using Caco-2 monolayers.

Data Extraction: Changes in area under the plasma 
concentration-time curve (AUC; CYP studies) and efflux (P-gp 
studies) were reviewed for potential DDIs in accordance with 
FDA criteria.

Results: Desvenlafaxine coadministration had minimal effect 
on CYP 2D6 and/or 3A4 substrates per FDA criteria. Changes in 
AUC indicated either no interaction (90% confidence intervals 
for the ratio of AUC geometric least-squares means [GM] 
within 80%–125%) or weak inhibition (AUC GM ratio 125% 
to < 200%). Coadministration with ketoconazole resulted in a 
weak interaction with desvenlafaxine (AUC GM ratio of 143%). 
Desvenlafaxine was not a substrate (efflux ratio < 2) or inhibitor 
(50% inhibitory drug concentration values > 250 μM) of P-gp.

Conclusions: A 2-step process based on FDA guidance can 
be used first to determine whether a pharmacokinetically 
mediated interaction occurs and then to assess the potential 
clinical significance of the DDI. In the case of the drug tested 
in this series of studies, the potential for clinically meaningful 
DDIs mediated by CYP 2D6, CYP 3A4, or P-gp was found to be 
low.
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The US Food and Drug Administration (FDA) states that 
a new drug application should include an assessment of 

the potential for drug-drug interactions (DDIs) and outlines 
the process for conducting DDI studies and interpreting the 
study results.1 Practicing clinicians should both understand 
the importance of assessing the risk for clinically significant 
DDIs in new drugs and be familiar with the process by which 
that assessment is made. The number of patients prescribed 
antidepressant drugs,2 together with the prevalence and 
complexity of multiple medication use in that patient population,3 
means that a substantial proportion of patients seen by primary 
care practitioners and specialists are likely to be at risk for DDI.

Major depressive disorder (MDD) is often difficult to treat 
to remission,4,5 and treatment strategies include augmentation 
of antidepressants with other drugs.4,6,7 Patients with MDD 
also have high rates of comorbidity with mental disorders8 
and general medical conditions.9–16 In general, the greater the 
number of medications prescribed, the higher the risk to the 
patient.17,18 Consequently, patients treated with antidepressants 
are significantly more likely to receive greater numbers of 
medications compared with patients taking nonantidepressant 
drugs3 and are at increased risk for DDI. A listing of some of 
the most common concomitant medications used by depressed 
patients receiving antidepressant treatment in real-world clinical 
practice18,19 reflects the multiple medication use associated with 
MDD (Table 1). Concomitant antidepressants (the use of > 1 
antidepressant) were reported by 25.2% of the study population, 
cholesterol and triglyceride reducers by 16.1%, analgesics 
and antipyretics by 15.8%, nonsteroidal anti-inflammatory/
antirheumatic products by 14.4%, anxiolytics by 12.6%, drugs 
for peptic ulcer by 12.6%, and antiepileptics by 11.2%. In all, 
78% of these antidepressant-treated patients took concomitant 
medications.18

METHOD
Despite the importance of assessment for potential risk of 

DDI, many prescribers are not knowledgeable about this part 
of the drug development process and how it impacts their care 
of patients. The intent of this article is to explain this process, 
including both the design of the studies that are conducted 
and how the results are interpreted to determine whether an 
interaction occurs and, if so, how to judge whether it is likely to 
be clinically meaningful and to what degree. The process will 
be illustrated using the studies that were done for the recently 
approved antidepressant desvenlafaxine by examining the 
potential for DDIs mediated by the cytochrome P450 (CYP) and 
P-glycoprotein (P-gp) systems. Desvenlafaxine pharmacokinetic 
studies conducted by the sponsor (Pfizer) and published in the 



© 2015 COPYRIGHT PHYSICIANS POSTGRADUATE PRESS, INC. NOT FOR DISTRIBUTION, DISPLAY, OR COMMERCIAL PURPOSES. © 2015 COPYRIGHT PHYSICIANS POSTGRADUATE PRESS, INC. NOT FOR DISTRIBUTION, DISPLAY, OR COMMERCIAL PURPOSES. e2    Prim Care Companion CNS Disord 
2015;17(2):doi:10.4088/PCC.14r01710

Macaluso et al 

past 5 years (since 2009) are reviewed to demonstrate the 
systematic process for assessing the likelihood for clinically 
meaningful DDI with a new drug based on FDA guidance. 
Eight open-label studies published in 5 articles20–24 tested the 
effects of steady-state treatment with desvenlafaxine (50–400 
mg/d) on the pharmacokinetics of CYP 2D6 and/or CYP 
3A4 substrate drugs and the effect of CYP 3A4 inhibition 
on desvenlafaxine pharmacokinetics. The potential for 
DDIs mediated by the P-gp transporter was assessed in in 
vitro studies using Caco-2 monolayers.25 Changes in drug 
exposure (CYP studies) and efflux (P-gp studies) were 
reviewed for potential DDIs in accordance with FDA criteria.

PHARMACOKINETICALLY MEDIATED  
DRUG-DRUG INTERACTIONS

Among the most extensively studied systems implicated 
in pharmacokinetically mediated DDIs are the CYP system 
and the transport protein system, particularly P-gp. The 
CYP family of enzymes comprises the principal phase 1 
metabolic pathway for most clinically used drugs.26,27 The 
CYP enzymes responsible for the greatest percentage of 
oxidative metabolism of drugs in humans are CYP 3A4 
(36% of substrate interactions), CYP 2C (25%), and CYP 
2D6 (15%).28 Numerous antidepressant drugs, including 
tricyclic antidepressants (TCAs), selective serotonin 
reuptake inhibitors (SSRIs), serotonin-norepinephrine 
reuptake inhibitors (SNRIs), and atypical antidepressants, 
interact with CYP enzymes as substrates or inhibitors.19,27

The nonmetabolic efflux transporter P-gp is found 
in the gastrointestinal tract, hepatocytes, kidney, blood-
brain barrier, and placenta,27,29,30 and its activity can affect 
bioavailability or brain levels of substrate drugs.27,30 Substrates 
and/or inhibitors of P-gp include statin drugs,31 human 
immunodeficiency virus protease inhibitors,32 sex-steroid 
hormones,33 calcium-channel blockers,34 anticancer drugs,34 
and psychotropic drugs, including antidepressants.27,35 A 
number of antidepressants in the TCA, SSRI, and SNRI 
classes are known to interact with the P-gp transporter.27,35

Activity of CYP enzymes or the P-gp transporter can 
be inhibited or induced by coadministered drugs, altering 
exposure to the substrate drug and its metabolites.31,36,37 
Differences in exposure to medications related to CYP or 
P-gp activity can potentially affect safety, tolerability, or 

efficacy.38–43 Two examples illustrate potential risks of DDIs 
with antidepressant drugs. In the first example, venlafaxine, 
a CYP 2D6 substrate,19 is the potential victim of DDI in 
depressed patients taking concomitant CYP 2D6 inducers or 
inhibitors.18,39 Individuals can be classified as CYP 2D6 poor, 
intermediate, extensive, or ultrarapid metabolizers based on 
their metabolism of CYP 2D6 substrate drugs.26 Concomitant 
use of CYP 2D6 substrates or inhibitors with venlafaxine is 
associated with phenoconversion from extensive or ultra 
metabolizers to the poor metabolizer phenotype,18 and in 
patients with MDD treated with venlafaxine, there was a 
robust statistically significant difference between venlafaxine 
and placebo in terms of responder and remitter rates in CYP 
2D6 extensive metabolizer individuals, but not in CYP 2D6 
poor metabolizer individuals.39 In a second example of DDI 
with an antidepressant drug, paroxetine, which is both a 
CYP 2D6 substrate and a strong CYP 2D6 inhibitor,19 is the 
perpetrator of DDI with tamoxifen in women treated for 
estrogen receptor–positive breast cancer.36,37,44,45 Tamoxifen 
is metabolized sequentially by CYP 3A4 and CYP 2D6 to 
the active metabolite endoxifen.46,47 In women treated with 
tamoxifen, both the CYP 2D6 poor metabolizer phenotype 
and the use of concomitant treatment with paroxetine are 
associated with reduced exposure to endoxifen,36,37 and 
coadministration of paroxetine with tamoxifen is associated 
with a significantly increased risk of mortality.44 These 
examples underscore that DDIs with antidepressant drugs 
could reduce the efficacy of the antidepressant drug or of a 
concomitant drug, or even the efficacy of both, in the case 
of a drug that is both a substrate and an inhibitor of CYP 
enzymes, such as paroxetine.

Like phase I metabolism, phase II glucuronidation is 
mediated by a family of isozymes, the uridine 5′-diphospho-
glucuronosyltransferase (UGT) enzymes.48 The potential for 
DDI between a new drug and concomitant medications that 
alter UGT activity depends, in part, on the number of UGT 
isozymes involved in the metabolism of the new drug: if 
glucuronidation is mediated by multiple UGTs, inhibition 
of 1 would be unlikely to have a clinically significant effect 
on drug exposure.49,50 Therefore, the likelihood of DDI at 
the UGT pathway level can be assessed by determining the 
number of UGT isozymes that can catalyze glucuronidation 
of a new drug.

ASSESSING THE POTENTIAL FOR 
PHARMACOKINETICALLY MEDIATED  

DRUG-DRUG INTERACTIONS
In the drug development process, early steps prior to the 

conduct of clinical trials include in vitro and animal studies, 
followed by first-in-human studies and pharmacokinetic 
analyses. One of the goals of preclinical assessment is 
to understand the new drug’s disposition (absorption, 
distribution, metabolism, and elimination) in order to 
identify mechanisms with the potential for interference 
with or by other drugs. The new drug’s metabolism is 
characterized, and potential sites for interaction with the 
metabolism of other drugs—as either the perpetrator or the 
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 ■ In patients taking multiple medications, the risk of drug-drug 
interaction (DDI) increases with the number of medications 
prescribed.

 ■ Patients treated for depression are significantly more likely 
to receive greater numbers of medications compared with 
patients taking nonantidepressant drugs and, therefore, are 
at increased risk for clinically significant DDI.

 ■ Clinicians treating patients taking multiple medications 
should understand the importance of assessing the risk for 
clinically significant DDI in new drugs and be familiar with 
the process by which that assessment is made.
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Table 1. Cytochrome (CYP) Substrates and Inhibitors: Selected 
Concomitant Medications Taken by at Least 2% of Patients 
Receiving Serotonin-Norepinephrine Reuptake Inhibitor (SNRI) 
Treatment for Depression in a Naturalistic Study (N = 900)a,b 

Concomitant Medication
Patients,

n (%)
CYP 

Substrate
CYP 

Inhibitor
Antidepressants (nonstudy drug)

Citalopram 31 (3.4) 2C19 2D6
Duloxetine 27 (3.0) 2D6 2D6c

Escitalopram 33 (3.7) 2D6
Fluoxetine 30 (3.3) 2C9; 2D6 2C19; 2D6d

Paroxetine 19 (2.1) 2D6 2D6d

Sertraline 30 (3.3) 2C9; 2D6c

Anti-inflammatory, nonsteroids
Ibuprofen 75 (8.3) 2C9
Naproxen sodium 26 (2.9) 1A2; 2C9

Antipsychotics
Aripiprazole 21 (2.3) 2D6; 3A4,5,7
Quetiapine 31 (3.4) 3A4,5,7

Anxiolytics
Alprazolam 65 (7.2) 3A4,5,7

β-blocking agents
Metoprolol 40 (4.4) 2D6

Calcium channel blocker
Amlodipine 24 (2.7) 3A4,5,7

Cholesterol and triglyceride reducers
Atorvastatin 40 (4.4) 3A4,5,7
Simvastatin 42 (4.7) 3A4,5,7

Drugs for treatment of peptic ulcer
Omeprazole 39 (4.3) 2C19 2C19

Hormonal contraceptives/hormonal 
therapy
Estradiol 83 (9.2) 1A2; 3A4,5,7
Progestogen 64 (7.1) 2C19; 3A4,5,7

Hypnotics and sedatives
Zolpidem 60 (6.7) 3A4,5,7

Opioids
Oxycodone 24 (2.7) 2D6

Other analgesics and antipyretics
Acetaminophen 89 (9.9) 1A2; 2E1

aData on file, Pfizer Inc.
bA total of 705/900 (78%) patients took at least 1 other drug in addition 

to venlafaxine.18 CYP substrate or inhibitor designation based on http://
medicine.iupui.edu/clinpharm/ddis/table.aspx.19

cModerate inhibitor (causes a > 2-fold but ≤ 5-fold increase in plasma AUC 
values).

dStrong inhibitor (causes a > 5-fold increase in plasma AUC values).
Abbreviation: AUC = area under the plasma concentration-time curve.

victim of DDI—are selected as the focus of pharmacokinetic 
studies.

This information was determined for desvenlafaxine 
during its preclinical development and provided the 
guidance for which DDI studies should be conducted. 
Desvenlafaxine is primarily metabolized by UGT 
conjugation to desvenlafaxine-glucuronide; approximately 
19% is excreted as the glucuronide metabolite.51 Less 
than 5% of desvenlafaxine is excreted as the oxidative 
metabolite N,O-didesmethylvenlafaxine, a product of the 
CYP 3A4 pathway; approximately 45% of desvenlafaxine is 
excreted unchanged.51,52 On the basis of this information, 
desvenlafaxine was believed to have a low risk of either causing 
or being the victim of DDI mediated via either CYP 2D6 or 
3A4 pathways, in contrast to a number of other psychiatric 
medications.53 However, antidepressants are frequently used 
with drugs that are substrates, inhibitors, or inducers of those 
CYP enzymes (see Table 1).18 The glucuronidation pathway 
and transporter interactions were also recognized as possible 

sites of interaction for desvenlafaxine, and preclinical studies 
assessing the potential for DDIs involving UGT and P-gp are 
also reviewed.

Determination of Risk for Drug-Drug Interactions 
Mediated via CYP Enzymes: Design and Interpretation 
of Pharmacokinetic Studies

Once relevant CYP pathways have been identified, the 
potential for CYP-mediated interactions can be assessed 
in in vivo pharmacokinetic studies (Table 2). These studies 
generally enroll healthy volunteers and test the new drug at 
doses used in clinical practice in an open-label design.

Pharmacokinetic DDI studies are designed to measure 
differences in exposure to the CYP substrate drug (quantified 
as area under the concentration-time curve [AUC] and 
peak plasma concentration [Cmax]) with and without a 
concomitant inhibitor or inducer of that enzyme. To test 
whether the new drug is a substrate, it is coadministered 
with a strong inhibitor of the enzyme, and to test whether 

http://.


© 2015 COPYRIGHT PHYSICIANS POSTGRADUATE PRESS, INC. NOT FOR DISTRIBUTION, DISPLAY, OR COMMERCIAL PURPOSES. © 2015 COPYRIGHT PHYSICIANS POSTGRADUATE PRESS, INC. NOT FOR DISTRIBUTION, DISPLAY, OR COMMERCIAL PURPOSES. e4    Prim Care Companion CNS Disord 
2015;17(2):doi:10.4088/PCC.14r01710

Macaluso et al 

Table 2. Study Design for Determining Substrate or Inhibitor Status Based on US Food and Drug Administration (FDA) 
Guidance1,54

In Vivo CYP Studies

To determine:
Assess PK after 

coadministration with: FDA-suggested model drug: An interaction is confirmed if:
Is the study drug a CYP 2D6 substrate? Model CYP 2D6 inhibitora Quinidine

Paroxetine
Fluoxetine

Study drug exposure is increased (90% 
CIs for GM ratio > 125%); study drug 
metabolite exposure is decreased (90% 
CIs for GM ratio < 80%)

Is the study drug a CYP 2D6 inhibitor? Model CYP 2D6 substrate Desipramineb

Dextromethorphan
Atomoxetine

Model drug exposure is increased; model 
drug metabolite exposure is decreased

Is the study drug a CYP 3A4 substrate? Model CYP 3A4 inhibitorc Ketoconazoleb

Itraconazole
Study drug exposure is increased; study 

drug metabolite exposure is decreased
Is the study drug a CYP 3A4 inhibitor? Model CYP 3A4 substrate Midazolamb

Buspirone
Felodipine
Lovastatin
Eletriptan
Sildenafil
Simvastatin
Triazolam

Model drug exposure is increased; model 
drug metabolite exposure is decreased

In Vitro P-gp Studies

To determine:
Efflux is measured in  

Caco-2 cell monolayers for: FDA-suggested model drug: An interaction is confirmed if:
Is the study drug a P-gp substrate? Transport of study drug in 

monolayers expressing model 
P-gp inhibitor

Verapamilb
Cyclosporine A
Elacridar
Ketoconazole
Nelfinavir
Quinidine
Reserpine
Ritonavir
Saquinavir
Tacrolimus
Valspodar
Zosuquidar

Efflux ratio (transport of study drug 
basolateral to apical vs apical to 
basolateral direction) for study drug ≥ 2

Is the study drug a P-gp inhibitor? Transport of model P-gp 
substrate in monolayers 
expressing study drug

Digoxinb

Loperamide
Quinidine
Vinblastine
Talinolol

Net efflux ratio of model drug decreases 
with increasing concentration of study 
drug

aAn inhibitor that increases the AUC of a substrate for CYP 2D6 by ≥ 2-fold.
bUsed in the current analysis.
cAn inhibitor that increases the AUC of a substrate for CYP 3A4 by ≥ 5-fold.
Abbreviations: AUC = area under the plasma concentration-time curve, Cmax = peak plasma concentration, CYP = cytochrome, GM = geometric  

least-squares means, P-gp = P-glycoprotein.

the new drug is an inhibitor itself, it is administered with 
a model substrate drug that is known to show significant 
changes in concentration with coadministration of an 
inhibitor.1 Plasma concentrations of the substrate drug are 
measured for substrate alone and for substrate plus inhibitor 
or potential inhibitor either in separate arms of the study 
or using the more efficient within-subject crossover design. 
All of the desvenlafaxine studies used a crossover design in 
which subjects received a single dose of the substrate drug 
in phase 1, followed by once-daily dosing of the inhibitor 
and single dose of the substrate after steady-state plasma 
concentration of the inhibitor was reached in phase 2. If an 
active comparator is included in a DDI study, a randomized 
crossover design can be used to test half the subjects with 
the new drug first and half with the comparator first. The 
duration of each phase of the DDI study is dependent on 

pharmacokinetic and pharmacodynamic characteristics 
of the substrate and inhibitor drugs. Blood samples are 
collected at specified intervals throughout each study phase, 
and plasma substrate concentrations at each time point are 
used to calculate the AUC in the presence and absence of 
the inhibitor or potential inhibitor.

The magnitude of effect of the inhibitor on substrate 
drug exposure is estimated by comparing the AUC and 
Cmax of the substrate drug alone and in the presence of the 
interacting drug at steady state. The results are then analyzed 
in a 2-step process based on FDA guidance to determine 
whether an interaction has occurred and, if so, how likely 
the interaction is to be clinically significant. First, lack of 
an interaction between drugs can be concluded if the 90% 
confidence intervals (CIs) for the ratio of AUC geometric 
least-squares means (GM) fall wholly within a prespecified 



© 2015 COPYRIGHT PHYSICIANS POSTGRADUATE PRESS, INC. NOT FOR DISTRIBUTION, DISPLAY, OR COMMERCIAL PURPOSES. © 2015 COPYRIGHT PHYSICIANS POSTGRADUATE PRESS, INC. NOT FOR DISTRIBUTION, DISPLAY, OR COMMERCIAL PURPOSES.     e5Prim Care Companion CNS Disord 
2015;17(2):doi:10.4088/PCC.14r01710

Pharmacokinetically Meditated Drug-Drug Interactions

bioequivalent range of 80%–125%.1 Second, if an interaction 
is observed (ie, the GM ratio falls outside the bioequivalence 
range), the strength of the interaction can be described based 
on the magnitude of the GM ratio. FDA guidance defines 
weak inhibition based on an increase in substrate AUC of 
125% to < 200%, moderate inhibition based on an increase 
in AUC of 200% but < 500%, and strong inhibition based 
on an increase in AUC of ≥ 5-fold (Figure 1).1 (For more 
information, see http://www.fda.gov/downloads/Drugs/
GuidanceComplianceRegulatoryInformation/Guidances/
ucm292362.pdf.)

A series of single-center, open-label, single-dose, 
pharmacokinetic studies sponsored by Pfizer were designed 
to assess the risk for clinically meaningful DDIs involving 
desvenlafaxine and substrates or inhibitors of CYP 2D6 
and/or 3A4 (Table 3). Desipramine20,21 and midazolam22 
were used as the model substrate drugs because their 
metabolism is principally, if not wholly, dependent on a 
single CYP enzyme (CYP 2D6 and CYP 3A4, respectively). 
One desipramine study included the active comparator 
paroxetine in a 4-period, randomized crossover design.21 
Two substrates, tamoxifen and aripiprazole, were used to 
assess the effect of desvenlafaxine on drugs metabolized 
via both the CYP 2D6 and CYP 3A4 pathways,23,24 either 
sequentially (tamoxifen) or concurrently (aripiprazole).36,55 
The effect of CYP 3A4 inhibition on desvenlafaxine 

exposure was assessed using the known CYP 3A4 inhibitor 
ketoconazole.22,56

Desvenlafaxine was assessed at doses used in 
desvenlafaxine efficacy and safety studies57–62 from the 
recommended therapeutic dose of 50 mg/d to 400 mg/d 
(Table 3). Results from the desvenlafaxine CYP studies are 
described below and summarized in Table 4.

Effect of Desvenlafaxine  
on CYP Substrate Drug Exposure

CYP 2D6. Coadministration of desvenlafaxine 100 mg/d 
with desipramine 50 mg resulted in increases in desipramine 
Cmax and AUC of 25% and 17%, respectively.20 The 90% CI for 
GM ratio for desipramine AUC (110%–125%) fell within the 
80%–125% acceptance range for bioequivalence, indicating 
no interaction between these drugs. The ratios of GM AUC 
and Cmax values for the metabolite 2-hydroxydesipramine 
were 114% (90% CI, 110%–119%) and 110% (90% CI, 104%–
116%), respectively.

Desvenlafaxine 100 mg/d was coadministered with 
desipramine in a second study that used a 4-period design for 
a comparison with paroxetine. In that study, Cmax and AUC 
increased by 30% and 36%, respectively, and the 90% CI for 
GM ratio for desipramine AUC (114%–163%) fell outside 
the 80%–125% bioequivalence range.21 The ratios of GM 
Cmax and AUC values for 2-hydroxydesipramine were 116% 

Figure 1. Formal Assessment of Pharmacokinetically Mediated Drug-Drug Interactions: Concept and 
Definitions

aSee US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and 
Research.1

bBased on a predicted AUC ratio using population-based physiologically based pharmacokinetic models.
cDefinitions may change somewhat depending on the nature of the victim drug; for example, drugs with a narrow 

therapeutic index (such as lithium) are less forgiving compared with those with a wide therapeutic index (such as 
desvenlafaxine or most other serotonin-norepinephrine reuptake inhibitors or selective serotonin reuptake inhibitors).

Area under the plasma concentration-time curve (AUC): A measure of drug 
exposure calculated from plasma drug concentration at each sampled time 
point following drug administration  

 
Peak plasma concentration (Cmax): The highest level of drug detected in 

plasma samples following drug administration  
  

Geometric least-squares mean (GM) ratio for AUC = AUC2 / AUC1  
 
Percent inhibition = (AUC2−AUC1) / AUC1    
 

where AUC1 is the geometric mean AUC for substrate alone and AUC2 is the geometric mean AUC for 
substrate + the potential inhibitor   

 
FDA de�nitionsa    
1. Is there an interaction between 2 drugs?  
 

 
 
No: 90% con�dence intervals for AUC or Cmax GM ratio fall wholly  
within the prespeci�ed bioequivalence range of 80% to 125%b   
   
Yes: 90% con�dence intervals for GM ratio fall outside the 
bioequivalence range  
   
   

If yes:  
2. What is the magnitude of the inhibition?c
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http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm292362.pdf
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Table 3. Study Characteristics
Study Na Study Population Concomitant Drug CYP Pathway Desvenlafaxine Dose Design
19820 31 Healthy adults Desipramine CYP 2D6 substrate 100 mg Period 1: Single dose of desipramine

Period 2: Desvenlafaxine daily with a single dose 
of desipramine on day 6

90021 20 Healthy adults Desipramine CYP 2D6 substrate 100 mg Period 1: Single dose of desipramine
Period 2b: Desvenlafaxine/paroxetine daily with a 

single dose of desipramine on day 6
Period 3: Single dose of desipramine
Period 4b: Desvenlafaxine/paroxetine daily with a 

single dose of desipramine on day 6
18320 20 Healthy adults Desipramine CYP 2D6 substrate 400 mgc Period 1: Single dose of desipramine

Period 2: Desvenlafaxine daily with a single dose 
of desipramine on day 8

120522 25 Healthy adults Midazolam CYP 3A4 substrate 50 mg Period 1: Single dose of midazolam
Period 2: Desvenlafaxine daily with a single dose 

of midazolam on day 6
19522 24 Healthy adults Midazolam CYP 3A4 substrate 400 mgc Period 1: Single dose of midazolam

Period 2: Desvenlafaxine daily with a single dose 
of midazolam on day 8

120623 29 Healthy, 
postmenopausal 
women

Tamoxifen CYP 2D6 and CYP 
3A4 substrate

100 mg Period 1: Single dose of tamoxifen
Period 2: Desvenlafaxine daily with a single dose 

of tamoxifen on day 7
120724 35 Healthy adults Aripiprazole CYP 2D6 and CYP 

3A4 substrate
100 mg Period 1: Single dose of aripiprazole

Period 2: Desvenlafaxine daily with a single dose 
of aripiprazole on day 7

19422 13 Healthy adults Ketoconazole CYP 3A4 inhibitor 400 mg Period 1: Single dose of desvenlafaxine 400 mg
Period 2: Ketoconazole daily with a single dose of 

desvenlafaxine on day 5
aEvaluable for pharmacokinetic analysis of concomitant administration.
bStudy 900 had a 4-period, crossover design; half of the subjects were administered desvenlafaxine in period 2 and paroxetine in period 4; the other half 

were administered paroxetine in period 2 and desvenlafaxine in period 4.
cDesvenlafaxine dose was titrated at the onset of daily dosing and tapered at completion of the study.
Abbreviation: CYP = cytochrome.

Table 4. Statistical Summary of Treatment Comparisons: CYP 2D6 and CYP 3A4 Substrates

Substrate Drug
Metabolite Desvenlafaxine Dose

Cmax, Geometric Mean AUC, Geometric Mean
With Desvenlafaxine Alone Ratio (90% CI) With Desvenlafaxine Alone Ratio (90% CI)

CYP 2D6
Desipramine 100 mg/d 21.28 16.99 125%

(119%–132%)
573 491 117%

(110%–125%)
Desipramine 100 mg/d 25.25 19.35 130%

(118%–145%)
831 609 136%

(114%–163%)
Desipramine 400 mg/d 30.2 19.5 152%

(140%–165%)
1,093 558 190%

(175%–208%)
CYP 3A4
Midazolam 50 mg/d 18.24 21.20 86%

(79%–94%)
39.04 54.69 71%

(65%–78%)
Midazolam 400 mg/d 15.4 18.3 84%

(72%–97%)
28.95 41.90 69%

(61%–78%)
CYP 2D6 and CYP 3A4
Tamoxifen 100 mg/d 70.18 70.58 99%

(94%–105%)
5910 5,870 101%

(97%–105%)
Endoxifena 100 mg/d 0.99 1.08 92%

(85%–100%)
362.1 410.4 88%

(83%–94%)
Aripiprazole 100 mg/d 24.92 24.66 101%

(93%–110%)
1,584 1,494 106%

(101%–111%)
CYP 3A4 inhibitor
Ketoconazole 400 mg/d 865 804 108%

(100%–117%)
30,702 21,557 143%

(138%–149%)
aActive metabolite produced by CYP 2D6 mediated biotransformation of tamoxifen.
Abbreviations: AUC = area under the plasma concentration-time curve, Cmax = peak plasma concentration, CYP = cytochrome.



© 2015 COPYRIGHT PHYSICIANS POSTGRADUATE PRESS, INC. NOT FOR DISTRIBUTION, DISPLAY, OR COMMERCIAL PURPOSES. © 2015 COPYRIGHT PHYSICIANS POSTGRADUATE PRESS, INC. NOT FOR DISTRIBUTION, DISPLAY, OR COMMERCIAL PURPOSES.     e7Prim Care Companion CNS Disord 
2015;17(2):doi:10.4088/PCC.14r01710

Pharmacokinetically Meditated Drug-Drug Interactions

(90% CI, 100%–134%) and 100% (90% CI, 83%–121%), 
respectively. The 1.36-fold change in desipramine AUC 
indicates weak inhibition by desvenlafaxine 100 mg/d in 
that study. By comparison, coadministration with paroxetine 
20 mg resulted in a > 5-fold increase in desipramine AUC 
(GM ratios [90% CI]: desipramine, 519% [433%–621%]; 
2-hydroxydesipramine, 82% [71%–95%]).21

Coadministration with desvenlafaxine at the 400-mg/d 
dose resulted in desipramine Cmax and AUC increases of 52% 
and 90%, respectively; 2-hydroxydesipramine Cmax and AUC 
decreased by 18% (GM ratio: 82% [76%–88%]) and increased 
by 24% (GM ratio: 124% [119%–130%]), respectively. The 
90% CIs for the GM ratio for desipramine AUC fell outside 
the bioequivalence range (190% [175%–208%]), and the 1.9-
fold change in AUC indicates that desvenlafaxine at 8 times 
the recommended therapeutic dose is a weak inhibitor of 
CYP 2D6.

CYP 3A4. Coadministration of desvenlafaxine 50 mg/d 
with the CYP 3A4 substrate midazolam (4 mg) resulted in 
decreases in midazolam Cmax and AUC of 14% and 29%, 
respectively.22 The 90% CI for GM ratio for midazolam AUC 
(71% [65%–78%]) fell outside the bioequivalence range, 
but the 1.29-fold decrease indicated a weak interaction 
between the drugs. Coadministration with desvenlafaxine 
at the 400-mg/d dose had a similar effect on midazolam 
exposure: midazolam Cmax and AUC decreased by 16% and 
31%, respectively. Again, the 90% CI for GM AUC ratio fell 
outside the bioequivalence range (69% [61%–78%]), with 
magnitude of change indicating a weak interaction between 
midazolam and the 400-mg/d desvenlafaxine dose. Exposure 
to the metabolite 1'-hydroxymidazolam was unchanged after 
coadministration with either desvenlafaxine dose (GM ratio 
for AUC with desvenlafaxine 50 mg/d: 93% [87%–98%], with 
desvenlafaxine 400 mg/d: 98% [85%–113%]).

In this example, the change in AUC demonstrates reduced 
exposure after coadministration of the drugs, which could 
indicate weak induction of CYP 3A4 by desvenlafaxine. 
However, a CYP 3A4 promoter gene assay was conducted to 
test this hypothesis, and results showed no evidence of CYP 
3A4 induction by desvenlafaxine.63 Further, the induction 
of CYP 3A4 would be expected to increase exposure to the 
substrate’s metabolite; the reduction in 1'-hydroxymidazolam 
AUC is therefore not consistent with induction of CYP 3A4. 
At present, the mechanism underlying the small decrease in 
midazolam exposure after concomitant administration of 
desvenlafaxine is unknown.

CYP 2D6 and CYP 3A4. Results for coadministration of 
tamoxifen 40 mg with desvenlafaxine 100 mg/d indicated 
little potential for clinically significant DDI for a drug 
sequentially metabolized via first CYP 2D6 and then CYP 
3A4. Coadministration with steady-state desvenlafaxine 100 
mg resulted in changes in the ratios of adjusted geometric 
means for tamoxifen Cmax and AUC < 1% each, and 90% CIs 
for the AUC GM ratio fell within the bioequivalence range 
(GM ratio: 101% [97%–105%]).23 For the active metabolite 
endoxifen, the ratio of GMs for AUC was 88% (83%–94%; 
corrected for carry-over administration of tamoxifen alone).

Coadministration of aripiprazole 5 mg with steady-
state desvenlafaxine 100 mg resulted in minimal change 
in aripiprazole exposure. Aripiprazole Cmax and AUC 
increased 1% and 6%, respectively. Coadministration 
increased dehydroaripiprazole Cmax and AUC by 6% and 5%, 
respectively. The GM ratio for aripiprazole AUC was 106%, 
and its 90% CIs (101%–111%) fell within the bioequivalence 
range.24 Little potential for clinically significant DDI with 
desvenlafaxine is observed for drugs metabolized by both 
the CYP 2D6 and CYP 3A4 pathways.

Effect of CYP 3A4 
Inhibition on Desvenlafaxine Exposure

Coadministration with ketoconazole increased the 
Cmax and AUC of desvenlafaxine 400 mg by 8% and 
43%, respectively.22 The 90% CI for the GM ratio for 
desvenlafaxine AUC fell outside the bioequivalence range, 
but the interaction between desvenlafaxine and the CYP 
3A4 inhibitor was weak, based on the 1.43-fold increase in 
desvenlafaxine AUC.

UGT Isozymes
To determine the number of UGT isozymes that can 

catalyze glucuronidation of a new drug, and therefore 
the likelihood of DDI at the UGT pathway level, the new 
drug is incubated with cells expressing specific human 
UGTs, and drug and glucuronide metabolite levels are 
measured after incubation with a panel of different UGT 
isoforms. The presence of the glucuronide metabolite after 
incubation with a specific UGT isoform confirms that the 
isoform can mediate glucuronidation of the new drug. If 
preclinical studies indicate that a single UGT catalyzes 
glucuronidation of the new drug, pharmacokinetic studies 
like those described for CYP pathways would be used to 
confirm interactions at that site.49

Involvement of UGT isoforms in desvenlafaxine 
metabolism was assessed in preclinical studies. Conversion 
from desvenlafaxine to the glucuronide metabolite, 
O-desmethylvenlafaxine glucuronide, was found to be 
mediated by multiple isozymes.64 The presence of multiple 
glucuronidation pathways for desvenlafaxine indicates that 
the potential for a clinically significant DDI mediated by 
any single UGT isoform is low, and, hence, pharmacokinetic 
studies are not necessary.

P-Gp
The status of a drug as an inhibitor or substrate of P-gp 

can be assessed using in vitro methods such as a bidirectional 
transport assay. Per FDA guidance, a drug is a poor or non–
P-gp substrate if the net efflux ratio comparing transport of 
the potential P-gp substrate drug across a cellular monolayer 
expressing the transporter in the basolateral to apical versus 
the apical to basolateral direction is less than 2.1,65 Inhibition 
of P-gp is assessed by measuring the transport of a known 
substrate drug across the monolayer in the presence of 
increasing concentrations of the potential inhibitor.1,65 
A lack of P-gp inhibition can be concluded if no effect of 
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increasing test-drug concentration on net flux ratio of the 
substrate is observed, or based on 50% inhibitory drug 
concentration (IC50) if inhibition is observed at high test-
drug concentrations.1,65

Desvenlafaxine interaction with P-gp was studied in 
Caco-2 cell monolayers using the model P-gp substrate35 
digoxin (5 μM) and the known P-gp inhibitor1,66 verapamil 
(100 μM) as a positive control.25 The efflux ratio for 
desvenlafaxine was < 2 (1.3–1.5) at all doses tested (5, 25, 
and 100 μM), indicating that desvenlafaxine is not a P-gp 
substrate.25 Further, desvenlafaxine was not an inhibitor of 
P-gp activity in the Caco-2 assay: minimal inhibition was 
observed at the highest desvenlafaxine concentration used 
in the inhibition studies (250 μM), and the IC50 could not be 
calculated, as inhibition at all desvenlafaxine concentrations 
was < 20%.25

CONCLUSIONS
In an illustration of the assessment of the potential for 

DDIs, a series of studies demonstrated a low potential for 
DDIs with desvenlafaxine through the CYP, UGT, and P-gp 
systems. In vivo pharmacokinetic studies showed either no 
signal or weak interaction based on FDA guidance with 2D6, 
3A4, or the combination. Preclinical studies demonstrated 
that multiple UGT isozymes contribute to the phase II 
metabolism of desvenlafaxine, resulting in low risk of DDI 
via that pathway. Desvenlafaxine had clinically insignificant 
effects on the activity of P-gp in in vitro studies; on the basis 
of FDA guidance, there is no need to carry out in vivo studies 
when no in vitro signal is observed.1 The low potential for 
pharmacokinetically mediated DDI with desvenlafaxine 
is clinically important in light of the high rate of multiple 
medication use in patients who take antidepressant drugs.3,18 
Consistent with the findings of the DDI studies reported 
here, no case studies describing DDIs involving patients 
taking desvenlafaxine have been published to date.

Patients prescribed antidepressant drugs represent a 
large percentage of the overall US population, making the 
potential for DDIs a public as well as individual concern. 
Antidepressants are among the most widely prescribed 
medications in the United States,67 and more than half of 
all antidepressant medications are prescribed by primary 
care physicians, who may be less familiar than specialists 
with DDI risks associated with antidepressant drugs.68–70 
In a naturalistic study of 900 depressed patients prescribed 
venlafaxine, a total of 705 of 900 patients (78%) took at least 
1 other drug in addition to the antidepressant18 (Table 1). 
Such high rates of concomitant medication use underscore 
the importance of educating prescribers about how the 
process outlined in the FDA guidance can inform them of 
(1) whether an interaction occurs and (2), if so, how to judge 
to what degree it is likely to be clinically meaningful.

While the studies reviewed here are essential for providing 
an assessment of the potential for clinically significant 
DDIs in the general population of patients prescribed a 
new antidepressant medication, there are specific patient 
populations and drugs for which the clinical significance of 

a DDI may be increased. Patients with a reduced capacity 
to metabolize a particular drug are at greater risk for 
clinically significant DDI, and a critical metabolic pathway 
can be compromised by renal disease, liver disease, or poor 
or intermediate CYP metabolizer status. Further, small 
pharmacokinetic interactions may be clinically significant 
for drugs with a narrow therapeutic range,17 as there is little 
separation between therapeutic and toxic doses of these 
drugs; a concomitant medication that minimally increases 
exposure can produce a clinically important DDI with a drug 
with a narrow therapeutic range. Clinicians should therefore 
assess DDI risk for each patient individually. In some cases, 
therapeutic drug monitoring can be an important tool in the 
practice of “personalized medicine,” to determine which drug 
or drug combinations are most effective and best tolerated in 
specific patients.71,72 If response to antidepressant treatment 
is insufficient or unexpected adverse effects occur, assessing 
plasma drug levels can indicate if the patient’s clearance is 
unsusually rapid or slow, and the possibility of reduced or 
extensive metabolism due to genotype or DDI should be 
considered. For such patients, an antidepressant drug with a 
low potential for DDI may be the best treatment option. With 
these caveats in mind when prescribing for individual MDD 
patients, clinicians should consider DDI analyses when 
assessing the potential for a drug to act as either a perpetrator 
or victim of a clinically meaningful, pharmacokinetically 
mediated DDI.

Drug names: alprazolam (Xanax, Niravam, and others), amlodipine (Norvasc 
and others), aripiprazole (Abilify), atomoxetine (Strattera), atorvastatin 
(Lipitor), buspirone (BuSpar and others), citalopram (Celexa and others), 
desipramine (Norpramin and others), desvenlafaxine (Pristiq), digoxin 
(Lanoxin and others), duloxetine (Cymbalta), eletriptan (relpaz), escitalopram 
(Lexapro and others), felodipine (Plendil and others), fluoxetine (Prozac 
and others), itraconazole (Sporanox, Onmel, and others), ketoconazole 
(Nizoral, and others), loperamide (Imodium), lovastatin (Altoprev and 
others), metoprolol (Toprol, Lopressor, and others), naproxen (Naprosyn and 
others), nelfinavir (Viracept), omeprazole (Prilosec and others), oxycodone 
(OxyContin, Roxicodone, and others), paroxetine (Paxil, Pexeva, and others), 
quetiapine (Seroquel), ritonavir (Norvir),sertraline (Zoloft and others), 
sildenafil (Viagra and Revatio), tacrolimus (Astagraf XL, Prograf), tamoxifen 
(Soltamox and others), triazolam (Halcion and others), venlafaxine (Effexor 
and others), verapamil (Verelan, Isoptin, and others), zolpidem (Ambien, 
Edluar, and others).
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