

THE OFFICIAL JOURNAL OF THE AMERICAN SOCIETY OF CLINICAL PSYCHOPHARMACOLOGY

Supplementary Material

- Article Title: Polygenic Effects of the Lipid Metabolic Pathway Accelerated Pathological Changes and Disrupted Default Mode Network Trajectory Across the Alzheimer's Disease Spectrum
- Author(s): Feifei Zang, PhD; Yao Zhu, PhD; Xinyi Liu, PhD; Dandan Fan, PhD; Qing Wang, PhD; Qianqian Zhang, MD; Cancan He, PhD; Zhijun Zhang, MD, PhD; and Chunming Xie, MD, PhD, on behalf of Alzheimer's Disease Neuroimaging Initiative and the Alzheimer Disease Metabolomics Consortium
- DOI Number: https://doi.org/10.4088/JCP.20m13739

List of Supplementary Material for the article

- 1. Figure 1 Participant flow
- 2. <u>Table 1</u> Summary information of lipid metabolic pathway related multiple genes

Disclaimer

This Supplementary Material has been provided by the author(s) as an enhancement to the published article. It has been approved by peer review; however, it has undergone neither editing nor formatting by in-house editorial staff. The material is presented in the manner supplied by the author.

Supplementary Figure 1. Participant flow

Supplementary Table 1. Summary information of lipid metabolic pathway related multiple genes.

SNP	Chr.	Position	Closest	Allele	GMAF	OR	HWE		Function
			gene	change			X ²	р	
rs11136000	8	27607002	CLU	T>C	0.3848	0.86	0.974	0.324	CLU is related to cholesterol reverse transporting.1
rs5930	19	11113589	LDLR	A>G	0.3450	0.85	0.071	0.791	Elevated level of LDLR in the brain promotes extracellular A β clearance. ²
									Blood brain barrier-associated pericytes internalize and clear aggregated A β through LRP1-
rs1799986	12	57141483	LRP1	C>T	0.1047	0.92	0.293	0.588	dependent APOE subtype-specific mechanism. ³
_									
0054450				- 0					PICALM participates in receptor-mediated endocytosis as lipid internalization and transport
rs3851179	11	86157598	PICALM	I>C	0.3297	0.85	1.440	0.230	mediated by lipoprotein particles containing APOE and CLU. ⁴
rs2070045	11	121577381	SORL1	T>G	0.3214	1.13	0.381	0.537	SORL1 can bind lipoprotein particles containing APOE and mediate their endocytosis.5
roE000	16	EC002100	OFTO		0 4 4 9 4	1 11	0.042	0.026	CETP mediates the transfer of cholesterol esters from HDL to VLDL, thus promoting the
18002	10	20902100	CEIP	G>A	0.4461	1.11	0.043	0.630	balanced exchange of triglycerides and regulating HDL levels. ⁶
rs2230808	9	104800523	ABCA1	T>C	0.4109	1.10	0.870	0.351	ABCA1 regulates APOE levels, lipidation, and APOE-mediated cholesterol transfer from
									glial cells to neurons. ⁷
rs744373	2	127137039	BIN1	A>G	0.3714	1.17	0.227	0.634	BIN1 is also associated with receptor-mediated endocytosis.8
rs429358		45411941		-	-	-			ΔPOE is a major cholesterol carrier and ΔPOE isoforms differentially regulate ΔB
	19		APOE				1.391	0.238	argregation and clearance in the brain ⁹
rs7412		45412079		-	-	-			

Abbreviations: Chr. = chromosome; GMAF = global minor allele frequency reported from 1000Genome genotype data; HWE = Hardy-Weinberg equilibrium; OR = odds ratio for the minor allele; SNP = single nucleotide polymorphism.

Supplementary References

1. Gelissen IC, Hochgrebe T, Wilson MR, et al. Apolipoprotein J (clusterin) induces cholesterol export from macrophage-foam cells: a potential anti-atherogenic function? *The Biochemical journal*. Apr 1 1998;331(Pt 1):231-7.

2. Kim J, Castellano JM, Jiang H, et al. Overexpression of low-density lipoprotein receptor in the brain markedly inhibits amyloid deposition and increases extracellular A beta clearance. *Neuron.* Dec 10 2009;64(5):632-44.

3. Ma Q, Zhao Z, Sagare AP, et al. Blood-brain barrier-associated pericytes internalize and clear aggregated amyloid-β42 by LRP1-dependent apolipoprotein E isoform-specific mechanism. *Molecular neurodegeneration*. Oct 19 2018;13(1):57.

4. Rudinskiy N, Grishchuk Y, Vaslin A, et al. Calpain hydrolysis of alpha- and beta2-adaptins decreases clathrin-dependent endocytosis and may promote neurodegeneration. *The Journal of biological chemistry*. May 1 2009;284(18):12447-58.

5. Wollmer MA. Cholesterol-related genes in Alzheimer's disease. *Biochimica et biophysica acta*. Aug 2010;1801(8):762-73.

6. Chen JJ, Li YM, Zou WY, Fu JL. Relationships between CETP genetic polymorphisms and Alzheimer's disease risk: a meta-analysis. *DNA and cell biology*. Nov 2014;33(11):807-15.

7. Wahrle SE, Jiang H, Parsadanian M, et al. ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE. *The Journal of biological chemistry*. Sep 24 2004;279(39):40987-93.

8. Pant S, Sharma M, Patel K, Caplan S, Carr CM, Grant BD. AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling. *Nature cell biology*. Dec 2009;11(12):1399-410.

9. Liu CC, Liu CC, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. *Nat Rev Neurol*. Feb 2013;9(2):106-18.

It is illegal to post this copyrighted PDF on any website. • © 2021 Copyright Physicians Postgraduate Press, Inc.