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Supplementary Figure 1
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Supplementary Figure 2. Methods

In KM, the number of clusters, k, is pre-selected and the algorithm is initiated by k-data
points from n-patients being randomly selected as initial medoids [1]. The percent of responses
that differs from that medoid is called the Hamming distance [2]. The other (n-k) patients are
assigned to each medoid based on the minimum Hamming distance. With these assignments, a
new set of k-medoids are set based on the median response within each cluster. K-medoids is
preferred over k-means for categorical data. The algorithm of assignment to clusters is repeated
iteratively until convergence. We evaluated KM for pre-defined k ranging from 2 to 70. The upper
limit of 70 was chosen to facilitate statistical identifiability of representing 78 ROS symptoms into
a slightly smaller number of clusters. Validation data was assigned to the closest medoid using a
Hamming distance.

In LCA, the number of latent classes, k, also is pre-selected and the algorithm is initiated
by data points being randomly assigned to k-clusters [3]. Cluster membership was determined
based on a sequential expectation-maximization (EM) algorithm. In the expectation (E)-step, the
expected cluster sizes and assignments are calculated conditional on the definitions of how each
symptom probabilistically contributes to the likelihood that each patient lies within each cluster.
In the maximization (M)-step, those definitions are modified to maximize the likelihood of the
expected cluster assignments determined in the E-step. The E and M steps are applied
sequentially until convergence in the MDLV toolbox [4]. Within this convergence method, cluster
membership is probabilistic, whereas after convergence, patients were assigned greedily the
cluster with highest probability of membership. We varied k from 2 to 70, similar to KM.

Validation data was assigned to the cluster with the highest membership probability.



Supplementary Table 1. Exact performance of each method evaluated using leave-one-out
cross-validation. Confidence intervals estimated with binomial exact statistics or, for the area
under the receiver operating curve (AUC), the Wald method. Abbreviations: Logistic regression
based on individual symptoms (LR), LR with recursive feature elimination (LR-RFE), k-medoids
(KM), principal component analysis (PCA), independent component analysis (ICA), latent class
analysis (LCA), density-based spatial clustering of applications with noise (DBSCAN), estimate
(Est), confidence interval (Cl), predictive value (PV).

Accuracy Sensitivity Specificity ES-PV DS-PV AUC
Method | Est(%) 95%Cl | Est (%) 95% Cl | Est(%) 95%Cl | Est(%) 95%Cl | Est(%) 95%Cl | Est(%) 95%Cl
LR 76 72-81 88 84-92 35 25-45 82 78-87 46 34-58 62 53-69
LR-RFE 75 71-80 91 87-94 24 15-33 80 76-85 42 28-56 64 55-72
Total 79 75-84 97 95-99 17 9-25 80 75-85 64 44-84 72 65-78
KM 78 74-83 97 95-100 13 6-21 79 75-84 60  40-80 69 61-76
PCA 79 74-83 85 81-90 55 45-66 87 82-91 53 42-63 74  66-80
ICA 47 41-52 35 30-41 87 79-94 90 84-96 28 22-34 67 60-74
LCA 80 76-85 96 93-98 28 19-39 82 77-86 65 50-80 72 65-79
DBSCAN 77 67-87 100 100-100 0 0-0 77 73-82 - - 69 61-76




In DBSCAN, we eschew the concept of pre-defining the number of clusters and
summarizing a cluster by a central point or pattern of responses [5]. Instead, we pre-define an
epsilon, g, and a minimum number of points, m, needed to define a cluster. We randomly select
data points and assign any data points within a Hamming distance of € to the same cluster. We
extend the definition of that cluster by iteratively extending the cluster to include all data points
within € of the points within the presumptive cluster. This iterative process stops when there are
no more points within ¢ of the points within the presumptive cluster and the cluster is maintained
if it includes at least m points. If the cluster is too small, the data points are assigned to the
“outlier” cluster. This process of cluster determination is repeated for each data point. We vary
€ from the minimum non-zero to maximum observed Hamming distance in the dataset. We vary
m from 2 to the entire size of the entire dataset, minus one point. If validation data was within ¢
of data within a cluster, then it was assigned to that cluster but otherwise it was considered an
“outlier.”

In PCA and ICA, the hypothesis is that the 78 ROS symptoms can be summarized using a
lower number of components based on patterns in similar responses across multiple
symptoms. Components are interpreted as combinations of similar symptoms that may be
more interpretable than individual symptoms (e.g. a pain component including
musculoskeletal, joint, and head pain). In PCA, the first component is determined based on the
single vector that maximizes the variance of the data when projected onto that vector [6]. Each
subsequent component is determined based on the vector perpendicular to all prior
components that maximizes the remaining variance of the projected data. In ICA, the

components are initialized with the PCA components [7]. These components are modified



iteratively by the FAST ICA algorithm to maximize the statistical independence of components
[7], as compared to the requirement of being perpendicular. This tends to lead to a sparse
representation of the data. Validation data was projected onto these learned components and

did not contribute to the determination of components.
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