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Focus on Suicide

Frontothalamic Circuit Abnormalities  
in Patients With Bipolar Depression and Suicide Attempts
Li Zhang, MDa,b,c,d; Zhiyong Lia,b,c; Yu Wua,b,c; Yue Yu, MMedd,e,f;  
Gong-Jun Ji, MDd,f,g; Yanghua Tian, MDd,e,f,*; and Kai Wang, MDd,e,f,g,*

ABSTRACT
Objective: Suicide is the leading cause of premature death among 
patients with bipolar disorder (BD), so it is imperative to identify 
biological or psychometric markers for suicide risk. Previous functional 
neuroimaging studies of the general BD population have focused on 
abnormalities within cortical-subcortical circuits. The aim of the current 
study was to examine potential cortico-subcortical circuit abnormalities 
predictive of suicide attempt in patients with BD.

Methods: We examined functional connectivity (FC) based on 5 regions 
of interest: bilateral anterior cingulate cortex (ACC), medial frontal 
cortex, inferior frontal cortex, amygdala, and thalamus, by resting-state 
functional magnetic resonance imaging (rs-fMRI) in 65 participants, 
including patients with BD and suicide attempts (SA group; n = 24), 
patients with BD and no suicide attempts (NSA group; n = 15), and 
healthy control subjects (HC group; n = 26). Patients met DSM-5 criteria 
for bipolar I disorder with current major depressive episode.

Results: The total patient group (SA+NSA) exhibited significantly lower 
FC between bilateral thalamus and frontal cortex (F = 35.11, P < .01), 
and this deficit was most severe in the SA group. In addition, patients 
demonstrated significantly reduced FC values between bilateral inferior 
frontal gyrus and both inferior temporal gyrus (F = 20.68, P < .01) and 
fusiform gyrus (F = 20.98, P < .01), but FC was stronger in the SA group 
than the NSA group. Both patient groups also exhibited reduced FC 
based on these seeds including bilateral amygdala, medial frontal cortex, 
and ACC, but without significant differences between the SA and NSA 
groups.

Conclusions: The results suggest that reduced FC within specific 
frontothalamic circuits may increase the vulnerability for suicidal 
behavior in patients with BD. These FC abnormalities might provide 
potential predictors of suicide attempt in BD.
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B ipolar disorder (BD) is a severe mental illness 
strongly associated with suicidal behavior. Indeed, 

suicide is a leading cause of death in this patient group, 
and a recent review concluded that the risk of suicide 
among BD patients was up to 20–30 times greater 
than that for the general population.1–4 Approximately 
25%–60% of BD patients attempt suicide during their 
illness, and ~4%–19% die by suicide.5 Suicide attempt 
is currently the strongest predictor of further suicide 
attempts and suicide.6 In addition, there is evidence 
that suicide in BD patients may be more violent and 
lethal.7 However, the pathophysiologic mechanisms 
that motivate suicide are unclear, so it is currently 
difficult to accurately predict suicide attempt and 
completion based solely on BD clinical features.8

Depression is the predominant mood state associated 
with suicide in bipolar disorder.9 Bipolar disorder 
patients with suicide attempts are hospitalized more 
frequently for depression than BD patients without 
suicide attempts,10 and previous severe depression is 
highly predictive of later suicidal behavior.11,12 Patients 
with more severe depressive phases are also more likely 
to attempt suicide.13,14

Strong association of suicidal behavior with 
depression suggests that treatment with antidepressants 
might reduce suicidal risk, though most studies have 
yielded inconsistent evidence.15 Some patients with 
BD can worsen clinically and increased risk of suicidal 
behavior when given an antidepressant.16,17 Lithium is 
the only known antisuicidal treatment with evidence 
from randomized controlled studies of a reduction 
in the risk of suicide of more than 50%.18 However, 
the benefits of lithium are restricted by adverse effects 
and a low therapeutic index.19 Given these findings, 
pathophysiologic mechanisms underlying suicidality in 
BD might be distinct from those underlying depressive 
symptoms of BD.

Several previous studies of patients with BD and 
suicide attempt have demonstrated morphometric 
and functional abnormalities in key nodes of cortical-
subcortical circuits, such as the prefrontal cortex (PFC), 
anterior cingulate cortex (ACC),20 caudate nucleus, 
putamen, thalamus, and nucleus accumbens.21 Under 
normal conditions, these circuits mediate reciprocal 
communication between cortical and subcortical 
regions22 critical for normal emotional regulation 
and cognitive function. In this experiment, we used 
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resting-state functional magnetic resonance imaging 
(rs-fMRI) to examine spontaneous neural activity in patients 
with bipolar depression and suicide attempts, patients with 
bipolar depression and no suicide attempts, and matched 
healthy control (HC) subjects. Given that extreme affective 
instability and cognitive deficits are major trait-related 
risk factors for suicide in bipolar disorder,23,24 we chose 
to measure whole brain connectivity to these cortical and 
subcortical regions implicated in emotion generation, 
emotion regulation, and cognitive control, including 
bilateral ACC, medial frontal cortex, inferior frontal cortex, 
amygdala, and thalamus.

METHODS

Participants
A total of 39 patients with bipolar I disorder currently 

experiencing a major depressive episode were recruited from 
the psychiatric inpatient unit of Anhui Mental Health Center 
between May 1, 2019, and June 20, 2021. All patients met 
Diagnostic and Statistical Manual of Mental Disorders, Fifth 
Edition (DSM-5) criteria for bipolar depression and were 
diagnosed by 2 qualified psychiatrists using the Structured 
Clinical Interview for DSM-5 (SCID).25,26 Patients were 
divided into 2 groups, 24 with suicide attempts (SA group) 
and 15 with no suicide attempts (NSA group). Suicide 
attempts were defined as self-injurious acts committed in 
the person’s lifetime that involved at least some intent to die. 
The clinical severity of depressive symptoms was assessed 
using the Hamilton Depression Scale (HDRS).27 Inclusion 
criteria were confirmed BD diagnosis (above) and HDRS 
score ≥ 20 on the day of fMRI. Exclusion criteria were as 
follows: (1) electroconvulsive therapy in the previous 
3 months; (2) lifetime diagnosis of substance abuse, 
schizophrenia, or schizoaffective disorder; (3) previous or 
current neurologic illness; (4) head motion exceeding 2 mm 
in translation or 2° rotation during the fMRI scans; and (5) 
other contraindications for MRI.

We also recruited 26 healthy participants meeting the 
same criteria as patients except for BD diagnosis as the HC 
group. The study was conducted in accordance with the 
recommendations of Human Brain Imaging Collection, 
Anhui Medical University Ethics Committee, and the 
protocol was approved by the Anhui Medical University 
Ethics Committee. All subjects volunteered to participate 
in the study and provided written informed consent after 

receiving a full written and verbal explanation of study aims 
and procedures.

MRI Data Acquisition
Structural and functional magnetic resonance images 

were acquired from all participants using a 3-T scanner 
(Discovery GE750w at University of Science and Technology 
of China). During rs-fMRI scanning, participants were 
instructed to keep their eyes closed without falling asleep 
and to avoid thinking of anything in particular. Functional 
images, each consisting of 217 echo-planar volumes, 
were acquired using the following parameters: repetition 
time = 2,400 ms, echo time = 30 ms, flip angle = 90°, 
matrix size = 64 × 64, field of view = 192 × 192 mm2, slice 
thickness = 3 mm, and 46 continuous slices (1 voxel = 3 × 
3 × 3 mm3). High spatial resolution T1-weighted anatomic 
images consisting of 188 slices were acquired in the sagittal 
orientation using the following parameters: repetition time 
(TR) = 8.16 ms, echo time = 3.18 ms, voxel size = 1 × 1 × 1 
mm3, slice thickness = 1 mm, flip angle = 12°, and field of 
view = 256 × 256 mm2.

Resting-State fMRI Data Preprocessing
The rs-fMRI data were preprocessed using the Data 

Processing Assistant for Resting-State Functional MR 
Imaging toolkit,28 a software package based on Statistical 
Parametric Mapping (www.fil.ion.ucl.ac.uk/spm) and the 
Resting State Functional MR Imaging Toolkit29 (http://www.
restfmri.net).

The first 10 volumes were deleted to allow signal 
equilibration. After slice timing correction, the time 
series was realigned to the first volume for head motion 
correction. After realignment, data with head movement 
exceeding 2 mm of translation or 2° of rotation in any 
direction were discarded. Structural T1-images were 
transformed to Montreal Neurologic Institute (MNI) space 
using Diffeomorphic Anatomic Registration Through 
Exponentiated Lie algebra (DARTEL). Functional images 
were then transformed to MNI space based on the 
transformation matrix for structural images and linear 
trends were removed. Nuisance signals, such as those 
from 24 Friston motion parameters, white matter, and 
cerebrospinal fluid, were regressed out. All functional 
images were then smoothed with a 4-mm isotropic Gaussian 
kernel and bandpass filtered (0.01–0.10 Hz). Subsequently, 
scrubbing was conducted to remove time points with high 
motion (defined as framewise displacement > 0.5), as well 
as 1 time point prior to and 2 time points following each 
high-motion time point.30

Functional Connectivity Analysis
To identify changes in cortico-subcortical circuits 

associated with suicidality in BD, FC analyses were 
conducted using the following regions of interest (ROIs) as 
seeds: bilateral ACC, medial frontal cortex, inferior frontal 
cortex, amygdala, and thalamus. The bilateral ACC, inferior 
frontal cortex, medial frontal cortex, amygdala, and thalamus 

Clinical Points
 ■ Bipolar disorder (BD) is a severe mental illness strongly 

associated with suicidal behavior. The pathophysiologic 
mechanisms underlying suicidality in BD might be distinct 
from those underlying depressive symptoms of BD.

 ■ The authors suggest that the abnormally weak functional 
connectivity between thalamus and frontal cortex may 
disrupt affective and cognitive functions and confer a 
heightened vulnerability for suicidal behavior.

http://www.fil.ion.ucl.ac.uk/spm
http://www.restfmri.net
http://www.restfmri.net
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seeds were identified using Wake Forest University Pickatlas 
software (WFU Pickatlas, version 3.0.5).31 The signal time 
courses of each voxel within these ROIs were extracted, and 
Pearson correlation coefficients were calculated for all other 
voxels. These correlation values were then transformed to 
Fisher z scores and used to construct FC maps for each 
individual and group.

Correlation Analyses Between  
rs-fMRI and Disease Severity

To examine the relationships between cortical-
subcortical circuit strength and clinical symptom severity, 
we calculated correlations between regional FC values 
(above) and HDRS scores controlling for sex, age, and years 
of education.

Statistical Analysis
Group means from normally distributed datasets were 

compared by 1-way analysis of covariance (ANCOVA) and 
group means from skewed datasets by the Mann-Whitney 
U test. Sex ratio was compared by the χ2 test. Functional 
connectivity maps of each seed region were compared 
among groups using a voxel-based, 1-way ANCOVA with 
sex, age, years of education, and antipsychotic medication 
dose as covariates, followed by post hoc 2-sample t tests 
using Statistical Parametric Mapping (SPM)12 (https://
www.fil.ion.ucl.ac.uk/spm). To control for multiple 
comparisons, statistical maps were thresholded using 
the Gaussian random field correction with a voxel-level 
threshold of P < .001 and cluster-level threshold of P < .05. 
If significant by ANCOVA, post hoc 2-sample t tests were 
performed to compare FC values within voxel clusters 
between groups. Furthermore, we also calculated whole 
brain connectivity based on these ROIs using antidepressant 
dose as a covariate (Supplementary Figures 1–5).

RESULTS

Demographic and Clinical  
Characteristics of the Study Population

The study population was composed of 39 BD patients, 
24 with suicide attempts (SA group) and 15 with no suicide 
attempts (NSA group), and 26 HCs. Table 1 summarizes 
the demographic and clinical characteristics of the study 
population. There was no significant group difference in 
mean age, sex ratio, and years of education. As expected, 
HDRS scores were significantly higher in the combined 
patient group (SA+NSA) than the HC group, confirming 
current depressive symptoms. All patients were currently 
taking medication, and all antipsychotics prescribed 
were second generation. Medication load is described in 
Supplementary Table 1. The two patient groups did not differ 
in disease duration or the proportions currently receiving 
antipsychotic, lithium, antiepileptic drug, antidepressant 
drug, and benzodiazepine treatments. There were also no 
significant differences in mean framewise displacement as 
calculated by the method of Power et al.30

Weaker Functional Connectivity to the Bilateral 
Thalamus in BD Patients With Suicide Attempt

Functional connectivity of the bilateral thalamus 
with medial frontal gyrus and superior frontal gyrus was 
significantly reduced in both patient groups compared to 
the HC group and was lower in the SA group than the NSA 
group (F = 35.11, P < .01) (Figure 1).

Stronger Functional Connectivity  
to the Bilateral Inferior Frontal Gyrus  
in BD Patients With Suicide Attempt

Functional connectivity of the bilateral inferior frontal 
gyrus with inferior temporal gyrus (F = 20.68, P < .01) and 

Table 1. Demographic and Clinical Information of the Study Population

BD and suicide 
attempts

BD and 
no suicide attempts

Healthy  
controls Statistic

P  
value

Demographic 
Age, mean (SD), y 33.5 (12.1) 29.8 (10.9) 34.2 (11.3) F = 0.654 .523
Sex χ2 = 0.588 .745

Male 9 6 8
Female 16 8 18

Education years, mean (SD) 10.8 (3.4) 12.5 (3.5) 11.8 (4.0) F = 1.251 .292
Clinical
Duration of illness, mean (SD), y 8.32 (1.45) 7.28 (1.77) t = 0.439 .663
HDRS, mean (SD) 26.9 (7.0) 27.3 (6.3) t = 1.011 .319
Suicide ideation (HDRS item), mean (SD) 2.64 (0.14) 2.21 (0.21) t = 1.730 .092
Framewise displacement, mean (SD) 0.05 (0.03) 0.04 (0.02) 0.05 (0.02) F = 0.740 .48
Medication
Medication load index, mean (SD) 2.24 (0.12) 2.35 (0.17) NA t = −0.575 .569
Medication, n of participants

SSRIs 10 6 0
SNRIs 2 1 0
Antipsychotics 18 12 0
Anticonvulsantsa 18 8 0
Lithium 8 6 0

aAnticonvulsants consisted mainly of benzodiazepines and valproate.
Abbreviations: BD = bipolar disorder, NA = not applicable, SNRI = serotonin-norepinephrine reuptake inhibitor, 

SSRI = selective serotonin reuptake inhibitor.

https://www.fil.ion.ucl.ac.uk/spm
https://www.fil.ion.ucl.ac.uk/spm
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Figure 2. Whole-Brain Changes in Functional Connectivity to the Bilateral Inferior Frontal Gyrus 
Across Groups

A. The bilateral frontal inferior gyrus demonstrated increased functional connectivity to the inferior tempo-
ral gyrus in BD with suicide attempts compared to BD with no suicide attempts and decreased functional 
connectivity to the inferior temporal gyrus in BD compared to healthy controls. 

B. Bar chart shows the average Fisher Z transformed functional connectivity values between the bilateral 
inferior frontal gyrus and the inferior temporal gyrus among the subjects within each group. 

aRepresents functional connectivity based on the left (L) and right (R) frontal inferior gyrus. “Temprol inf” refers to areas 
including the inferior temporal gyrus and fusiform gyrus.

*P < .05, **P < .01.
Abbreviations: BD = bipolar disorder, FC = functional connectivity.
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Figure 1. Whole-Brain Changes in Functional Connectivity to the Bilateral Thalamus 
Across 3 Groups

A. The left and right thalamus demonstrated decreased functional connectivity to the frontal clus-
ters across groups. The color bar indicates F statistic magnitude. 

B. Bar chart shows the average Fisher Z transformed functional connectivity values between the bilateral 
thalamus region of interest and the frontal cluster among the subjects within each group.

aRepresents functional connectivity based on the left (L) and right (R) thalamus.
**P < .01.
Abbreviations: BD = bipolar disorder, FC = functional connectivity.
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Figure 3. Whole-Brain Changes in Functional Connectivity to the Bilateral Amygdala Across 
Groups

A. The bilateral amygdala demonstrated decreased functional connectivity to the frontalparietal and fusi-
form gyrus clusters in BD compared to healthy controls. The color bar indicates F statistic magnitude.

B. Bar chart shows the average Fisher Z transformed functional connectivity values between the bilateral 
amygdala ROI and frontalparietal and fusiform gyrus clusters among the subjects within each group.

aThe center of frontalparietal cluster is 6, –42, 63 in Montreal Neurologic Institute (MNI) coordinates. The center of 
occipital fusi cluster is 36, –81, – 21 in MNI coordinates.

**P < .01.
Abbreviations: BD = bipolar disorder, FC = functional connectivity, ROI = region of interest.
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Figure 4. Whole-Brain Changes in Functional Connectivity to the Bilateral Medial 
Frontal Cortex Across Groups

A. The bilateral medial frontal cortex ROI demonstrated decreased functional connectivity to the 
precuneus clusters in BD compared to healthy controls. The color bar indicates F statistic magnitude. 

B. Bar chart shows the average Fisher Z transformed functional connectivity values between the 
bilateral medial frontal cortex ROI and precuneus among the subjects within each group.

**P < .01.
Abbreviations: BD = bipolar disorder, FC = functional connectivity, ROI = region of interest.
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fusiform gyrus (F = 20.98, P < .01) was also significantly 
reduced in patients compared to controls, but in contrast 
to bilateral thalamus pathways, FC in these pathways was 
stronger in the SA group than the NSA group (Figure 2).

Nonspecific BD-related FC Changes  
With Bilateral Amygdala, Medial Frontal Cortex,  
and Anterior Cingulate Cortex

We also observed significant differences in FC with 
the bilateral amygdala (F = 25.64, P < .01), ACC (F = 25.41, 
P < .01), and medial frontal cortex (F = 32.51, P < .01) among 
groups, and post hoc t tests indicated significant differences 
between the total patient group and HC group but no 
difference between the SA and NSA groups (Figures 3–5).

Associations Between  
FC Changes and Disease Severity

There was no significant correlation between FC strength 
and HDRS scores (P > .05, false discovery rate–corrected).

DISCUSSION

This rs-fMRI study revealed significantly lower FC of 
the bilateral thalamus with frontal cortex in BD patients 
compared to matched controls and even weaker FC in 
patients with previous suicide attempt (SA) compared to 

patients without previous suicide attempt (NSA). Patients 
also demonstrated weaker FC of bilateral inferior frontal 
gyrus with inferior temporal gyrus and fusiform gyrus, 
but, in this case, FC was stronger in those with suicide 
attempt. Finally, patients exhibited weaker FC to the bilateral 
amygdala, medial frontal cortex, and ACC, but without 
significant difference between those with or without suicide 
attempt. Thus, increases and decreases in FC within specific 
cortical-subcortical circuits may promote suicidality in BD.

Consistent with our primary finding of weakened FC of 
bilateral thalamus with frontal cortex in BD patients with 
suicide attempt, previous studies have reported structural 
and metabolic abnormalities in the thalamus associated 
with depressive symptomatology32–34 and suicide.35–37 The 
thalamus receives strong dopaminergic projections that are 
critical for mood regulation.38 The frontothalamic pathway 
is also crucial for cognition and emotional processing. 
Thalamic abnormalities are known to be involved in 
the pathophysiology of suicidal behaviors, and reduced 
thalamic volume has been reported in psychotic disorder 
patients with suicide attempts.35,39 Moreover, the numbers 
of frontothalamic circuit fibers projecting to medial frontal 
cortex and OFC were significantly reduced in suicidal 
patients with depression compared to depressed patients 
without suicidal ideation or attempt.37 Local decreased 
activity in prefrontal cortex was found in a cohort of 
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Figure 5. Whole-Brain Changes in Functional Connectivity to the Bilateral Anterior 
Cingulate Cortex Across Groups

A. The bilateral anterior cingulate cortex ROI demonstrated decreased functional connectivity to the 
precuneus and frontal clusters in BD compared to healthy controls. The color bar indicates F statistic 
magnitude. 

B. Bar chart shows the average Fisher Z transformed functional connectivity values between the 
bilateral anterior cingulate cortex ROI and the clusters within precuneus and frontal cortex among 
the subjects within each group.

aRepresents the functional connectivity based on the left anterior cingulate cortex.
**P < .01.
Abbreviations: BD = bipolar disorder, FC = functional connectivity.
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individuals with depression who had completed suicide.23 
The thalamus also has one of the highest levels of serotonin 
transporter (SERT) expression in the human brain.40 These 
SERTs regulate serotonergic transmission by transporting 
serotonin from the extracellular space into the neuron, and 
SERT capacity has a major influence on emotional behavior 
and brain connectivity41 by modulating information flow 
between the limbic system and cerebral cortex.42 Thus, 
serotonergic signaling in the thalamus participates in critical 
higher brain functions such as executive function43,44 and 
mood regulation.45–48 We suggested that the abnormally 
weak FC between thalamus and frontal cortex may disrupt 
affective and cognitive functions and confer a heightened 
vulnerability for suicidal behavior.

Impulsivity is a cardinal feature of BD49,50 and is especially 
severe among patients who complete or attempt suicide.49–52 
The inferior frontal gyrus (IFG) is involved in the modulation 
of behavioral inhibition,53,54 and we found a significant 
decrease in FC of the bilateral IFG with the inferior temporal 
gyrus (ITG) and fusiform gyrus among patients. However, 
FC strength in the SA group was intermediate between the 
NSA and HC groups. We speculated that this stronger FC of 
the IFG with ITG and fusiform gyrus may facilitate suicidal 
acts among BD patients by increasing impulsivity. A previous 
study reported increased regional brain activity in the ITG 
of depressed patients with suicide attempts.55 Moreover, the 
ITG was identified as one of the top 10 regions for predicting 
suicide in depressed patients.56 The ITG is involved in a 
putative output system that regulates visceral functions 
connected to emotions,57 so abnormalities in the ITG may 
cause emotional disturbances, which in turn could increase 
suicide risk among BD patients.

We found that both patient groups exhibited weaker 
FC among bilateral amygdala, medial frontal cortex, and 
ACC, regions strongly implicated in the BD depressive state 
but not specifically in suicide vulnerability. The amygdala 
is involved in the regulation of emotion and in learning 
associations between stimuli with emotional salience and 
neutral stimuli. Consistent with these functions, multiple 
human neuroimaging studies have confirmed amygdalar 
hyperactivity in patients with depression.58,59 The amygdala 
is activated quickly in response to unpleasant or hostile 
stimuli.60–62 There are also widespread alterations in the 
frontal gray matter, including the medial frontal cortex 
and paracentral lobule, in subjects with emotional bias and 
attention deficits.63–65 Anatomic and function changes in the 
medial frontal cortex are also crucial to the pathophysiology 

of depression. Functional studies have found abnormal 
activity in the medial frontal cortex during both emotional 
tasks and the resting state66–68 that were correlated with 
clinical features of depression, such as emotional bias, 
apathy, loss of motivation in the context of both positive 
and negative incentives,69,70 disrupted emotional processing, 
and increased rumination. The ACC also contributes to 
executive function71 and processing of top-down activation 
through connections with prefrontal cortex, parietal cortex, 
and the motor system.72 Aberrant brain connectivity 
and local activity in the ACC and precuneus may disturb 
default-mode network function, resulting in abnormal 
emotional regulation.72,73 Taken together, these widespread 
abnormalities in the default mode network are likely critical 
to the pathogenesis of depression and closely associated with 
clinical manifestations such as emotional bias, cognitive 
deficits, and rumination.

Our study had several limitations. First, the sample 
size was relatively small, so the results require validation 
in a larger cohort. Second, this was a cross-sectional study 
without longitudinal observations, precluding conclusions on 
causality. Third, variations in ongoing pharmacotherapy may 
account for differences between patient groups (although 
there were no differences in the proportions receiving 
different drug classes). Nonetheless, this complication is 
unavoidable given the ethical considerations of keeping 
patients medication-free. Further studies using a prospective 
design and well-matched patient cohorts are required to 
address these issues. Fourth, our results were inconsistent 
with some of the previous research, possibly because of the 
heterogeneity of subjects, such as those with acute suicide 
behavior74 or unipolar depression.75 Fifth, in order to reduce 
sample heterogeneity, we excluded participants with any 
substance abuse. Because of this, generalizability of our 
results could be limited.

CONCLUSION

Bipolar patients with previous suicide attempts exhibited 
significantly weaker FC of the bilateral thalamus with the 
frontal cortex compared to patients without suicide attempts. 
These cortical-subcortical circuit alterations may increase 
the vulnerability for suicidal behavior in BD patients and 
thereby provide predictive biomarkers. Future longitudinal 
studies are needed to understand the neural correlates 
of suicidal behavior in BD patients and identify unique 
predictors of suicide risk.
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Supplementary Content 
1. As described in the previous articles[1, 2], for measuring total medication load in BD patients 

we used a strategy in which each medication was coded as absent = 0, low = 1 (equal or lower 

average dose), or high = 2 (greater than average dose) with reference to the midpoint of the 

Physician’s Desk Reference recommended daily dose range. We calculated a composite 

measure of total medication load for each individual, reflecting dose and variety of different 

medications taken, by summing all individual medications. (see Table 1 in Results).

2. The names and dosages of the drugs taken by each patient were detailed in the table below.

BPD_SA Antidepressants dosage(mg) Antipsychotics dosage(mg) anticonvulsants dosage(mg) Lithium dosage(mg) 

PT1001 Sertraline 50 quetiapine 300 valproate 200 

PT1003 Duloxetine 50 aripiprazole 10 

lithium 

carbonate 500 

PT1005 quetiapine 200 valproate 300 

PT1006 valproate 400 

PT1007 Sertraline 50 aripiprazole 10 valproate 200 

PT1009 escitalopram 10 quetiapine 100 valproate 300 

PT1010 valproate 200 

lithium 

carbonate 250 

PT1012 quetiapine 200 valproate 300 

PT1015 Sertraline 75 valproate 200 

lithium 

carbonate 500 

PT1017 Sertraline 50 quetiapine 300 

lithium 

carbonate 250 

PT1019 aripiprazole 15 valproate 300 

PT1020 Sertraline 50 valproate 200 

PT1022 fluoxetine 20 olanzapine 5 

lithium 

carbonate 250 

PT1023 quetiapine 200 valproate 150 

PT1025 aripiprazole 20 

lithium 

carbonate 500 

PT1027 Duloxetine 40 valproate 300 

PT1028 Sertraline 50 quetiapine 250 

PT1030 escitalopram 10 quetiapine 200 valproate 200 

PT1031 olanzapine 5 

lithium 

carbonate 250 

PT1032 quetiapine 150 valproate 300 

PT1033 valproate 500 

PT1035 Sertraline 50 valproate 300 

PT1036 quetiapine 200 valproate 200 

PT1038 aripiprazole 10 valproate 300 

PT1039 quetiapine 300 

lithium 

carbonate 500 

Supplementary Table 1. Names and Dosages of Drugs Taken by Each Patient 
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BPD_NSA Antidepressants dosage(mg) Antipsychotics dosage(mg) anticonvulsants dosage(mg) Lithium dosage 

PT1002 Sertraline 50 valproate 300 

lithium 

carbonate 250 

PT1004 Duloxetine 40 aripiprazole 10 valproate 200 

PT1008 quetiapine 200 

lithium 

carbonate 500 

PT1011 quetiapine 200 valproate 200 

PT1013 escitalopram 10 quetiapine 300 

lithium 

carbonate 250 

PT1014 aripiprazole 15 valproate 300 

PT1016 quetiapine 150 

lithium 

carbonate 250 

PT1018 Fluoxetine 20 olanzapine 5 valproate 200 

PT1021 aripiprazole 10 

lithium 

carbonate 500 

PT1024 quetiapine 150 valproate 300 

PT1026 Sertraline 50 aripiprazole 10 

PT1029 valproate 300 

PT1034 escitalopram 10 aripiprazole 20 

lithium 

carbonate 250 

PT1037 Sertraline 50 quetiapine 200 valproate 200 

2.Furthermore, we recalculated the whole brain connectivity based on these ROIs using

antidepressant dose as a covariate. After this processing, the results for the whole brain connectivity 

based on these ROIs are still similar with the previous. (see below) 
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Supplementary Figure 1. A bar chart of the average Fisher's Z transformed functional

connectivity values between the bilateral thalamus ROI and the frontal cortex among the subjects 

within each group.  
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Supplementary Figure 2. A bar chart of the average Fisher's Z transformed functional connectivity 

values between the the bilateral frontal inferior gyrus and the temporal inferior gyrus among the 

subjects within each group. * <0.05, **<0.01 
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Supplementary Figure 3. A bar chart of the average Fisher's Z transformed functional 
connectivity values between the bilateral amygdala ROI and the clusters within frontalparietal and 
fusiform gyrus among the subjects within each group. 
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Supplementary Figure 4. A bar chart of the average Fisher's Z transformed functional 

connectivity values between the bilateral medial frontal cortex ROI and precuneus among the 

subjects within each group. 
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Supplementary Figure 5. A bar chart of the average Fisher's Z transformed functional connectivity 

values between the bilateral anterior cingulate cortex ROI and the clusters within precuneus and 

frontal cortex among the subjects within each group. 
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