

# Supplementary Material

Article Title: The Association between Sleep Disturbances and Perceived Stress in Substance Use

Disorder Treatment

Authors: Martin Hochheimer, PhD; Jennifer D. Ellis, PhD; Brion Maher, PhD; Justin C. Strickland, PhD;

Jill A. Rabinowitz, PhD; David Wolinsky, MD; and Andrew S. Huhn, PhD

**DOI Number:** 10.4088/JCP.23m15220

## LIST OF SUPPLEMENTARY MATERIAL FOR THE ARTICLE

1. Appendix 1 Power and Effect Size

2. <u>Table 1</u> Power Calculations as Percentages

## **DISCLAIMER**

This Supplementary Material has been provided by the author(s) as an enhancement to the published article. It has been approved by peer review; however, it has undergone neither editing nor formatting by in-house editorial staff. The material is presented in the manner supplied by the author.

#### Supplementary Appendix 1

#### **Power and Effect Size**

An a priori power calculation for the linear regressions assuming the sample size of 3,314 (due to subjects completing their first survey after the seventh day of treatment), attempting to detect a small effect ( $f^2$ =0.02) with significance level of 0.05 yielded power of 0.99.

The aim of this study is to determine if there are clinically meaningful differences between groups therefore, the standardized coefficient of groups with statistical significant interactions will be evaluated according to Cohen's guidelines with standardized  $\beta$  below 0.1 being too small to be clinically relevant [1-4].

To verify if our power was adequate to detect significant associations between predictor and outcome variables, we conducted mixed-effects analysis simulations for detecting a medium effect. According to Cohen's criteria, a medium effect corresponds to a standardized  $\beta$  between 0.30 and 0.49 In our simulations, we replaced each variable with a standardized  $\beta$  of 0.40 for main effects and 0.16 (the product of two main effects at 0.40) for the interaction. These simulations were executed 1,000 times using the simr package in the R programming language[5] The results indicated insufficient power to detect a medium effect in the groups with primary substances being benzodiazepine or prescription stimulants. Consequently, these groups were excluded from the final analysis. For detailed power estimations, refer to the supplemental material.

Supplementary Table 1. Power Calculations as Percentages

|                                    |       | ISI_Total                            |              | Perceived Stress Scale               |             |
|------------------------------------|-------|--------------------------------------|--------------|--------------------------------------|-------------|
| Predictors                         |       | Estimates                            | CI           | Estimates                            | CI          |
| Alcohol                            |       | Ref.                                 |              | Ref.                                 |             |
| Cocaine                            |       | 93.3                                 | 98.56 -99.72 | 100                                  | 99.63-100   |
| Heroin/Fentanyl                    |       | 98.2                                 | 97.12-98.93  | 100                                  | 99.63-100   |
| Marijuana                          |       | 81.3                                 | 78.74-83.67  | 99                                   | 98.17-99.52 |
| Methamphetamine                    |       | 100                                  | 99.63-100    | 100                                  | 99.63-100   |
| Prescription Opioids               |       | 99.6                                 | 98.98-99.89  | 100                                  | 99.63-100   |
|                                    |       | PSS                                  |              | ISI                                  |             |
| Person Mean                        |       | 93.5                                 | 91.79-94.95  | 93.4                                 | 91.68-94.86 |
| Person Mean Centered               |       | 100                                  | 99.63-100    | 100                                  | 99.63-100   |
| Days                               |       | 100                                  | 99.63-100    | 100                                  | 99.63-100   |
| Age                                |       | 100                                  | 99.63-100    | 100                                  | 99.63-100   |
| Gender                             | Women | Ref.                                 |              |                                      |             |
|                                    | Men   | 98.1                                 | 97.05-98.85  | 99.9                                 | 99.44-100   |
|                                    | Other | 98.1                                 | 97.07-98.85  | 99.9                                 | 99.44-100   |
| <b>Between Person Interactions</b> |       | Substance * PSS Person Mean          |              | Substance * ISI Person Mean          |             |
| Cocaine *                          |       | 93                                   | 91.24-94.5   | 97.4                                 | 96.21-98.29 |
| Heroin/Fentanyl *                  |       | 93                                   | 91.24-94.5   | 96.9                                 | 95.63-97.88 |
| Marijuana *                        |       | 72.8                                 | 69.93-75.54  | 76.4                                 | 73.64-79.0  |
| Methamphetamine *                  |       | 98.5                                 | 97.54-99.16  | 99.5                                 | 98.84-99.84 |
| Prescription Opioids *             |       | 93.4                                 | 91.68-94.86  | 100                                  | 99.63-100   |
| Within Person Interaction          |       | Substance * PSS Person Mean Centered |              | Substance * ISI Person Mean Centered |             |
| Cocaine *                          |       | 100                                  | 99.63-100    | 100                                  | 99.63-100   |
| Heroin/Fentanyl *                  |       | 54.9                                 | 54.77-60.98  | 100                                  | 99.63-100   |
| Marijuana *                        |       | 60.4                                 | 57.29-63.45  | 100                                  | 99.63-100   |
| Methamphetamine *                  |       | 100                                  | 9963-100     | 100                                  | 99.63-100   |
| Prescription Opioids *             |       | 100                                  | 99.63-100    | 100                                  | 99.63-100   |
|                                    |       |                                      |              |                                      |             |

 $\boldsymbol{bold}$  - Indicates a value below 80%

- 1. Acock, A., *A Gentle Introduction to Stata. 4. izdaja*. 2014, College Station, Texas: Stata Press.
- 2. Cohen, J., Statistical power analysis for the behavioral sciences. 2013: Academic press.
- 3. Fey, C.F., T. Hu, and A. Delios, *The Measurement and communication of effect sizes in management research*. Management and Organization Review, 2023. **19**(1): p. 176-197.
- 4. Nieminen, P., *Application of Standardized Regression Coefficient in Meta-Analysis.* BioMedInformatics, 2022. **2**(3): p. 434-458.
- 5. Green, P., MacLeod, C. J., & Simm, G., simr: Power Analysis for Generalised Linear Mixed Models by Simulation. 2019.