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Abstract 

Objective: Tardive dyskinesia (TD) is a 
late-onset adverse effect of dopamine 
receptor-blocking medications, 
characterized by involuntary 
movements primarily affecting the 
mouth, though other body parts may be 
involved. Severity of TD varies from 
mild to debilitating and is usually 
irreversible. Despite the existence of 
treatments such as VMAT2 inhibitors, 
TD remains underdiagnosed, with 
40,000 patients treated of an 
estimated 2.6 million affected US 
individuals. This study demonstrates a 
novel, efficient, and reliable method to 
detect and bring TD to psychiatrists’ 

attention using video-based artificial 
intelligence. 

Methods: Individuals taking antipsychotic 
medications were enrolled in Study 1 
(n = 46) between March and November 
2018, in Study 2 (n = 136) between May 
2023 and May 2024, and in Study 3 
(n = 174) between July 2023 and May 
2024. Participants completed video 
assessments. A vision transformer 
machine-learning architecture was 
evaluated by calculating the area 
under the receiver operating 
characteristic curve (AUC), sensitivity, 
and specificity compared with a 
reference standard of the trained 
raters’ evaluation of TD on the Abnormal 
Involuntary Movement Scale. 

Results: The algorithm reached an AUC of 
0.89 in the combined validation cohort 
across Studies 1, 2, and 3. The model 
demonstrated strong and reliable levels 
of agreement, outperforming human 
raters. 

Conclusion: Our algorithm reliably 
detected suspected TD, reaching higher 
sensitivity and specificity than trained 
raters using the standard assessment. 
The algorithm can be used to monitor 
patients taking antipsychotic medications, 
allowing scarce resources to assess 
identified patients for a conclusive 
diagnosis by psychiatrists. 
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T ardive dyskinesia (TD) is a serious and often 
disabling neurological syndrome primarily 
caused by prolonged exposure to antipsychotic 

medications.1 It is characterized by involuntary, 
repetitive movements of the face, trunk, and extremities,2 

such as grimacing, blinking, and abnormal posturing. 
Incidence rates are estimated at 2%–4% per year for 
second-generation antipsychotics and higher for first- 
generation agents.3–5 TD significantly diminishes 
patients’ quality of life,6 compounding distress and 
cognitive impairment and contributing to nonadherence 
to antipsychotic treatment. 

Early detection of TD allows the deployment of 
effective interventions to mitigate morbidity. Traditional 
assessment is accomplished with one of several validated 
scales. The Abnormal Involuntary Movement Scale 
(AIMS) is the most frequently cited.7,8 This assessment is 
more reliable when performed by raters with significant 
experience with TD. However, it is difficult even for 
skilled diagnosticians to devote in-person resources, as 

often as 2–4 times per year, as would be necessary to 
provide every patient with the recommended standard of 
care regarding monitoring for TD. 

There is a lack of consensus about which conditions 
can be managed by telepsychiatry alone. Given that 
antipsychotic prescribing comes with the risk of TD, 
one understandable concern is the ability to evaluate 
this potential adverse effect appropriately. This article 
specifically addresses the reliability of machine- 
learning approaches to augment the initial screening 
of TD performed remotely. Importantly, although our 
method describes a completely remote technology, it 
does not replace an in-person assessment by a 
physician for the definitive diagnosis and subsequent 
management of the condition. The increase in 
telemedicine-first care, along with increasing demand 
for psychiatric services, has placed more demands on 
the health care workforce, frequently at the expense of 
time-consuming safety monitoring protocols like 
those for TD.9 
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Here, we report the results of 3 studies that sought to 
stratify the risk of suspected TD in patients exposed to 
antipsychotic medications. Beyond our algorithm’s 
ability to identify the presence or absence of suspected 
TD, it can also stratify the severity of the disorder. Using a 
visual transformation algorithm,10 our primary end point 
was performance at or greater than 90% area under the 
curve (AUC) in detecting the presence or absence of 
suspected TD compared to its presence/absence as 
defined by AIMS ratings on individuals taking an 
antipsychotic medication as assessed by experienced 
raters. 

METHODS 

We collected video data from individuals taking 
antipsychotic medications across 3 studies. All 
participants were at risk for TD, and video data were 
captured via a smartphone app that guided 
participants through a standardized protocol. Each 
participant’s video answers were assessed by our 
algorithm and compared with a trained rater 
assessment of an AIMS as the ground truth of the 
presence or absence of TD. 

For Studies 1 and 2, the participants completed a 
standard AIMS procedure by sitting across from a device 
on a stand rather than an assessor. For those elements 
focused on the face and mouth, a close-up video image 
captured the individual’s face, trunk, and hands. In Study 
1, following the AIMS, the individuals responded to 
6 open-ended questions (eg, “What kind of pet do you 
like?”) captured on video. The individual elements of the 
AIMS procedure were later viewed and assessed by 
3 trained raters and scored. 

Study 2 similarly involved the same AIMS procedure 
captured by a device on a stand. Study 2 reduced the 
open-ended questions to the 3 that generated the most 
detailed responses in Study 1. The AIMS elements were 
assessed similarly for each participant, with 3 trained 
raters completing independent assessments. For both 
studies, a consensus conference was held where AIMS 
scoring differed. The consensus served as the standard in 
the subsequent evaluations of the algorithm. 

Study 3 utilized a group of participants who were 
given a standard AIMS assessment by a single trained 
rater. The video assessment protocol was again 
simplified for use in home settings. Demographic 
information, including race/ethnicity and biological sex, 
was collected using a self-report questionnaire. 

The Study 3 video assessment consisted of 4 steps 
captured using the same smartphone app as Studies 1 and 
2 but with the following elements: (1) 15 seconds of 
tapping a hand on the shoulder, (2) 30 seconds of 
opening the mouth and sticking out the tongue followed 
by sitting still for 30 seconds, and (3) answering 2 open- 
ended questions. The first 2 components are similar to 
3 specific elements of the standard AIMS. In the first 
2 studies, the video data of participants were collected in 
a clinical setting, and the assessment was done remotely 
online. For the third study, the AIMS was conducted in a 
clinical setting, and the video data were conducted in the 
participant’s homes or other convenient locations. All 
3 studies began with obtaining informed consent from the 
participants. 

Participants 
The model’s training included data from the pilot 

(Study 1) and the follow-on study (Study 2). The 
model was iteratively trained: Study 1 included 
46 participants, and Study 2 added 136 participants. 
Participants were recruited from clinic populations of 
county social services organizations in Northeast Ohio 
and behavioral health community clubhouse settings 
in New York City with institutional review 
board–approved materials and were provided 
informed consent. The principal inclusion criteria 
were that participants had taken an antipsychotic 
medication for at least 90 days. Exclusion criteria 
included head injury in the last year, a history of 
cognitive or developmental disability that would inhibit 
answering questionnaires, and severe visual 
impairment. 

Participants were enrolled to ensure an even mix of 
individuals previously diagnosed with TD and those 
without, as defined by chart review. Our final sample 
contained 25% with no signs of TD, 60% with minimal 
to mild, and 15% with moderate-to-severe TD using the 
global severity rating from the AIMS. At model 
training time, participants were excluded if (1) 
participants’ faces could not be assessed due to issues of 
poor lighting or improper positioning, or (2) participants 
did not follow instructions, such as wearing sunglasses or 
masks, preventing adequate detection of facial movements. 
Of the total participants, 2 were removed from Study 1 and 
3 from Study 2 (Figure 1). All patients with chewing gum 
or loose dentures were asked to remove them in the 
protocol. 

A panel of 4 trained evaluators tested to pass criteria 
using commercially available clinical training tools (see 

Clinical Points 
• Screening for tardive dyskinesia (TD) is a standard of care. 

However, it is not routinely implemented and has low 
sensitivity and specificity. 

• For patients taking antipsychotic medication, clinicians 
might consider if automated screening tools will enhance 
their ability to screen for TD, which now has breakthrough 
treatments available. 
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Figure 1. 
Flow Diagram for Sample Size and Data Exclusion 

S
tu

d
y

 1
S

tu
d

y
 2

S
tu

d
y

 3
Tr

a
in

in
g

 D
a

ta

Participants aged ≥ 18 y (inclusion
criteria)
(n = 46)

Final cohort for analysis
(n = 44)

Participants aged ≥ 18 y (inclusion
criteria)
(n = 136)

Final cohort for analysis
(n = 133)

Participants aged ≥ 18 y (inclusion
criteria)
(n = 241)

Final cohort for analysis
(n = 174)

Participants aged  ≥ 18 y (inclusion
criteria)

(n = 423)b

Final cohort for analysis
(n = 351)c

Incomplete session (n = 2)
Excludeda

Incomplete ratings (n = 1)
Poor face visibility (n = 2)

Excludeda

Incomplete ratings (n = 36)
Failure to follow instr (n = 15)
Poor face visibility (n = 15)

Excludeda

Excludeda

Incomplete ratings (n = 37)
Poor face visibility (n = 17)
Failure to follow instr (n = 15)

aExclusion criteria included incomplete sessions/ratings, poor face visibility, and failure to follow 
instructions. 

bData represented include all participants initially enrolled across 3 studies (N = 423). 
cThe combined final cohort (n = 351) was used for the primary analysis. 
Abbreviation: instr = instructions. 
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https://aapp.org/aims/tips/2022) individually conducted a 
traditional AIMS evaluation of the videos as a diagnostic 
comparison. 

Study 3 added 174 participants. The final dataset 
included 351 participants with 3,979 video responses, 
each containing clips around 1–2 seconds containing 
normal or abnormal movements. As a result of poor- 
quality video below the threshold required for analysis, 
72 total participants (17%) were excluded from the 
evaluation dataset. Demographic information across 
all 3 studies is shown in Table 1. 

The video clips were split 75%/25% to create a 
training and testing set. The AIMS score was the target 
output to train a neural network to evaluate the 
videos. The level of agreement between the 
algorithm’s conclusion and the raters’ consensus was 
compared. 

Procedures 
In 2022, Sterns et al11 presented the results of a pilot 

study (Study 1) using machine learning to categorize 
video responses of patients (n = 46) at risk of TD. To 
test the feasibility and validate the algorithm, 3 trained 
raters evaluated the videos of individuals with and 
without diagnosed TD completing all components of 
the AIMS. The AIMS elements are identical to the 
standard AIMS, except the evaluation was done on video 
rather than by the person directly. The AIMS 
instructions state that tremors should not be rated. 
While parkinsonism clearly may mask TD or reduce the 
severity, tremors and rigidity do not enter the 
evaluation process. 

A machine learning algorithm using convolutional 
neural networks evaluated the open-ended questions 
focusing on the upper trunk and facial detection only. The 
machine learning engine demonstrated the ability to detect 
differences between the individuals with TD and without TD 
with an AUC of 0.77 (95% CI, 0.679–0.859), comparing on 
the ground truth of the presence or absence of TD as 
established by the consensus of the panel of 3 trained raters 
based on their conclusion using the AIMS.12,13 

A vision transformer (ViT) is a deep-learning model 
designed for image recognition tasks. Unlike traditional 
convolutional neural networks, ViT divides images 
into fixed-size patches, which are then linearly 
embedded and processed through a transformer 
architecture originally designed for natural language 
processing. This allows the model to capture long- 
range dependencies within images, making it 
particularly effective for detecting the subtle, 
involuntary movements associated with TD. Instead of 
using convolutional layers typical in convolutional 
neural networks, a vision transformer divides an 
image into fixed-size patches, linearly embeds each 
patch, and feeds the resulting sequence of linear 
embeddings into a transformer encoder. This 

approach leverages the transformer’s ability to capture 
long-range dependencies, leading to high performance 
on image classification tasks when trained on large 
datasets10 Here, we compare the vision transformer 
model with an evaluation of the videos by trained raters 
using the AIMS. We use the average of 3 raters in 
Studies 1 and 2 evaluating video-recorded AIMS and 
1 rater in Study 3 completing an AIMS in person. 

We expected TD to be diagnosed by capturing video 
data of the face, shoulders, trunk, arms, and hands. We 
recognize that we will miss potential movement. 
However, leg and trunk involvement may move the 
upper body. Similarly, foot movement may rock the 
upper body slightly. If just toe movement is involved, 
then it would be missed in our method. Study 
1 utilized 943 videos to train the algorithm. We looked 
to past research to calculate the sample size needed to 
achieve an AUC above 0.9. Based on Jacques and 
colleagues’14 and Rosenberg and Ekman’s 15 results, 
high-performing models can be achieved with 
1,000 samples per class. 

In Study 1, additional power was achieved with 
multiple samples per abnormal behavior in each video. 
Estimating from the sample, we expected each 
participant would provide an average of 22 segments 
in each video where abnormal behavior is recognizable. 
This gave a predicted total of 3,300 samples of 
abnormal behavior and significantly more normal 
behavior segments.16–18 Therefore, to appropriately 
power Studies 2 and 3, our estimate concluded that 
300 additional participants with TD (n = 150) and 
without TD (n = 150) would be sufficient. Data 
collection included participants across broad 
demographics (age, gender, race/ethnicity). 

Model Architecture 
The model was trained in 2 parts. The goal of the 

first part was to compress a large amount of video and 
audio data into a digestible embedding (a vector of 

Table 1. 
Sample Characteristics 

Variables 
No TD 

(n = 201 ) 
TD 

(n = 150) 
Full sample 

(n = 351 ) 
Age, mean ± SE, y 49.1 ± 13.8 55.2 ± 13.9 51.88 ± 14.2 

Sex, n (%) 
Female 103 (29.3) 92 (26.2) 195 (55.6) 
Male 97 (27.6) 58 (16.5) 155 (44.2) 
Other 1 (0.3) 00 (0.0) 1 (0.3) 

Race/ethnicity, n (%) 
Non-Hispanic Black 82 (23.4) 23 (6.6) 105 (29.9) 
Non-Hispanic White 100 (28.5) 112 (31.9) 212 (60.4) 
Hispanic 6 (1.7) 1 (0.3) 7 (2.0) 
Other 13 (3.7) 14 (4.0) 27 (7.7) 

Abbreviation: TD = tardive dyskinesia. 

Posting of this PDF is not permitted. | For reprints or permissions, contact 
permissions@psychiatrist.com. | © 2025 Physicians Postgraduate Press, Inc. 

4 J Clin Psychiatry 86:3, September 2025 | Psychiatrist.com 

Sterns et al 

https://aapp.org/aims/tips/2022
mailto:permissions@psychiatrist.com
https://www.psychiatrist.com/jcp
https://www.psychiatrist.com


numbers with a compressed representation). To do 
this, we utilized a pretrained InternVideo model19 

combined with a Convolutional Recurrent Neural 
Network (CRNN) of the Mel-Frequency Cepstral 
Coefficients (MFCC) to process the video and audio of 
each response. This combined network was further 
trained to detect adventitious movements 
characteristic of TD. 

Model Explainability 
Our approach incorporated exploratory analyses to 

identify key features influencing TD outcomes. 
Specifically, our model labels and predicts each region 
separately, which allows us to isolate which specific 
regions are detected as “at risk” for the movements 
leading to a TD-positive risk score output. 

RESULTS 

Model Performance 
The model’s performance was evaluated by iteratively 

adding data collected across 3 studies. The models were 
tested using each test set and combined test sets (see 
Table 2). In all cases, the AUC of the model increased 
when additional data were included. When the model was 
trained on all available data, the AUC ranged from 
0.85 to 0.98 across the available test sets. Performance 
improved from an initial AUC of 0.77 (Study 1) to 0.98 on 
the Study 1 test data using the full model trained on all 
3 training sets (Figure 2). 

In addition to evaluating the model’s performance using 
the area under the curve (AUC) of the receiver operating 
characteristic (ROC) curve, we also calculated the sensitivity 
and specificity at the crossover point, where sensitivity 
equals specificity. This threshold was determined to be 0.81. 

Heterogeneity of Treatment Effect 
The assessment of nonrandom variation associated 

with patient characteristics is known as the heterogeneity 
of treatment effect. The model’s performance was 
assessed across different demographic subgroups, 
including gender, ethnicity, and age. The results indicate 
low heterogeneity of treatment effect and uniformly high 
predictiveness across all demographic splits analyzed 
(Table 3). 

Comparison of CRNN with Human Raters 
Measuring the Cohen κ20 of our reviewers highlights 

the difficulty of accurately detecting the presence of TD. 
In Study 2, we measured the average Cohen κ of the 
reviewers on the binary presence of TD, resulting in 
0.37 ± 0.05. The Fleiss κ21 on the same reviewers 
was 0.35. 

To improve overall consistency, reviewers were 
allowed to discuss differences, update their ratings based 
on feedback, and were encouraged to reassess ratings 
where strong disagreement was found. After this 
iterative review process, the average Cohen κ was a 
moderate 0.57 ± 0.03 with the Fleiss κ = 0.58. 

Our machine learning (ML) model was evaluated 
using the same data as the reviewers. The model achieved 
a Cohen κ of 0.51, demonstrating greater consistency 
than the reviewers’ initial assessments. Furthermore, 
when utilizing the full dataset, the model’s Cohen κ 
increased to 0.61, considered a strong and reliable level 
of agreement, outperforming human raters. 

DISCUSSION 

The results demonstrate the potential to utilize video- 
based machine learning algorithms to monitor for the 

Table 2. 
Comparison of Data Source and Review Processes 

Study 1 Study 2 Study 3 
Reviewers 3 Reviewers 3 Reviewers + calibration/consensus 1 Reviewer 
AIMS Fulla Fulla Fullb 

Used in training Y Y Y 
Used in validation Y (cross validated) Y (cross validated) N 
Open ended questions 6 2 2 
AIMS instructions 16 16 2c 

Total videos/instructions 22 18 4 
Input features All videos All videos All videos 
Model’s target score AIMS total scored AIMS total scored AIMS total scoree 

aAIMS assessment conducted via recorded videos in a controlled environment. 
bAIMS assessment performed by clinician in face-to-face clinical setting. 
cAssessment protocol simplified to 2 specific instructions (tongue protrusion and shoulder tapping 

movements). 
dFinal score calculated as the average of 3 independent reviewer ratings after calibration. 
eAssessment score calculated by a single trained reviewer. 
Abbreviations: AIMS = Abnormal Involuntary Movement Scale, N = no, Y = yes. 

Posting of this PDF is not permitted. | For reprints or permissions, contact 
permissions@psychiatrist.com. | © 2025 Physicians Postgraduate Press, Inc. 

J Clin Psychiatry 86:3, September 2025 | Psychiatrist.com 5 

Detecting Tardive Dyskinesia Using Video-Based AI 

mailto:permissions@psychiatrist.com
https://www.psychiatrist.com/jcp
https://www.psychiatrist.com


presence or absence of suspected TD. When the 
algorithm identifies suspected TD, a psychiatrist is 
justified in evaluating and determining a diagnosis and 
actions to follow. It represents an opportunity to provide 
the patient with the regulated required monitoring at the 
standard pace or with increased frequency. An AIMS can 
be completed by trained care team professionals with 
greater urgency when an alert is reported. 

Leveraging a Vision Transformer algorithm to detect 
TD based on AIMS ratings from experienced clinicians, 
our model achieved an AUC ranging from 0.85 to 
0.98 when trained on the full dataset. This level of 
performance demonstrates the model’s ability to reliably 
identify TD, often outperforming human raters in terms 
of both sensitivity and specificity. The sensitivity was 
0.820, and the specificity was 0.821 when the threshold 
was set at 5.1. This compares favorably to the historical 
studies evaluating the performance of the most 
commonly used instrument, the AIMS. The algorithm 
demonstrated less bias compared to the interrater 
reliability of the human raters. 

Additionally, the temporal nature of our embeddings 
used in our visual transformer approach enables us to 
pinpoint the time points at which risk-positive movements 
occurred. This dual capability enhances the interpretability 
of our artificial intelligence (AI) predictions, aligning with 
the framework suggested by Joyce et al.22 

An additional benefit of our model is that it produces 
a continuous risk score, as it predicts the total AIMS 
score. The model predicts the “total” AIMS score (ie, the 
sum of the 7 body regions observed) even though the 
algorithm does not assess legs and feet directly. We picked 
a threshold on this score grouped into a binary 
prediction (TD/No-TD). All the metrics reported here 
are these binary metrics (AUC, sensitivity, specificity), 
which all refer to that binary prediction. That said, there 
is a benefit to utilizing the continuous value, as it allows 
the selection of multiple thresholds with multiple 
groupings (eg, low/medium/high). The visual 
transformer model can be calibrated to optimize 
sensitivity or specificity, which allows the tool to account 
for the different pretest probabilities of TD in varied 
populations. 

These results suggest that the algorithm effectively 
captures complex interactions and nonlinear relationships 
between variables. The high predictiveness of the model 
across different subgroups is notable in that clinical 
populations often differ from clinical trial populations, 
limiting the generalizability of expected benefits from 
breakthrough treatments. 

Diagnosing TD may be challenging for trained raters 
due to the subtle and variable nature of its symptoms. 
The AIMS used in this study, like all valid observation 
scales,12,13 relies on subjective judgment. Even with 
rigorous training, human raters reliably exhibit significant 
assessment variability. The higher Cohen κ for the 
algorithm indicates that it is more reliable than trained 
raters. It is expected to improve over time with more data. 
Factors such as fatigue, cognitive biases, and 
inconsistencies in detecting and interpreting subtle 
movements contribute to variability among raters. 

Although no curative treatment for TD is approved, 
2 drugs to control its symptoms are FDA-approved as 
breakthrough treatments. These are deutetrabenazine 

Figure 2. 
The Area Under the Curve of the Receiver 
Operating Characteristic Curve for the Full 
Sample (A), by Gender (B), and by Race (C) 

0.0
0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

False Positive Rate (1 – Specificity)

Tr
ue

 P
os

iti
ve

 R
at

e 
(S

en
si

tiv
ity

)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(S

en
si

tiv
ity

)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(S

en
si

tiv
ity

)

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (1 – Specificity)

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (1 – Specificity)

AUC of the ROC by gender (N = 350)a

AUC of the ROC by Race (N = 315)b

 AUC of the ROC for the full sample (N = 351)

Female (N = 201): 0.912 (0.870–0.946)

AUC (N = 351): 0.893 (0.861–0.924)

Male (N = 149): 0.864 (0.806–0.913)

White (N = 208): 0.889 (0.848–0.926)

Black or African-American (N = 107): 0.866 (0.749–0.955)

A

B

C

aROC curves by gender demonstrating consistent performance across male and 
female participants. 

bROC curves by race showing comparable model performance across racial/ethnic 
groups. 

Abbreviations: AUC = area under the curve, ROC = receiver operating characteristic. 
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and valbenazine.23,24 Given the reported rates of 
antipsychotic treatment, the expected prevalence in the 
US of TD is between 800,000 and 2,600,000. 
Currently, approximately 40,000 patients are 
prescribed either deutetrabenazine or valbenazine to 
reduce the symptoms of TD.25,26 There is a wide gap 
between those estimated with the condition and those 
who have received a diagnosis and prescribed 
treatment. 

The absence of early detection hinders the ability 
to advance treatment for TD. While the relationship 
between early identification and reversibility remains 
incompletely characterized in the literature, timely 
detection allows for prompt intervention strategies such 
as medication adjustment or symptom management. 
Current evidence suggests that prolonged exposure to 
causative agents may increase the likelihood of permanent 
symptoms; however, long-term longitudinal studies 
specifically examining outcomes based on detection 
timing are limited. Early identification enables clinicians 
to implement risk mitigation strategies before symptoms 
potentially progress to more severe manifestations that 
impact patient functioning and quality of life. Whether to 
spot TD to change the treatment course or treat 
symptoms with medication, clinicians would benefit 
from an efficient method to identify and monitor the 
condition. Early identification is the first step in 
understanding the irreversibility of the disorder, which 
is particularly important for second-generation 
antipsychotics being increasingly used to treat 
depression, for which there are non-neuroleptic 
alternatives. 

Impairment and disability are often experienced by 
patients who develop TD. Without efficient screening, 
many cases of TD go unnoticed, probably increasing the 
likelihood of irreversibility. However, it is difficult even 
for skilled diagnosticians to devote the in-person 
resources necessary to provide every patient prescribed 
an antipsychotic medication the 4–6 annual assessments 
to meet the standard of care for TD monitoring. The 
increase in telemedicine-first care, along with increasing 

demand for psychiatric services, has placed more 
demands on the health care workforce, frequently at 
the expense of time-consuming safety monitoring 
protocols.9 Despite best efforts, TD is usually 
recognized only after the involuntary movements 
become permanent. A rapid and automatic TD 
detection method would enable timely diagnosis and 
avoid morbidity, potentially obviating the need for 
expensive lifelong treatment. 

Limitations 
Studies 1 and 2 focused on obtaining video data with 

both the AIMS and the open-ended questions in a clinical 
setting, while Study 3 was gathered in a home setting. In 
Study 3, 17% of participants had to be excluded because 
of poor-quality video. To increase the likelihood of proper 
video capture in the future, the tool should provide real- 
time feedback on whether video quality is sufficient so it 
can coach the user to correct issues, Future versions of the 
algorithm will probably, with additional data, be able to 
reduce the quality threshold to restrict fewer people, In 
cases where there is an unresolvable issue with network, 
camera, environment, or user ability to correctly follow 
instructions, the person can be referred for an in-person 
or telehealth AIMS with the provider. Even with the 
current limitations, more monitoring and fewer in- 
person assessments are accomplished. The variety of 
training videos gathered is vital to the final model’s ability 
to generalize to future evaluations and significantly 
increase performance. 

While the algorithm significantly enhances the 
detection of TD, it cannot function independently as a 
diagnostic tool. A health care professional’s 
evaluation is essential to confirm the diagnosis 
required for prescribing treatment. A key concern is 
that the subtle early symptoms of TD often go 
unrecognized by clinicians, further emphasizing the 
need for broader training and awareness that can be 
increased with AI-based tools. 

Another limitation of the reported approach is that it 
excludes foot and toe movements from the assessment 

Table 3. 
Model Performance Across Different Studies 
Training data AUC (95% CI) Validation sample Sensitivity (95% CI)a Specificity (95% CI)a 

1 0.770b 1 – – 
1 + 2 00.826 (0.72–0.92) 1 + 2 00.762 (0.65–0.90) 00.744 (0.66–0.89) 
1 + 2 00.919 (0.82–0.99) 1 1.0 (0.67–1.0) 00.878 (0.73–1.0) 
1 + 2 00.823 (0.71–0.92) 2 00.778 (0.61–0.88) 00.783 (0.61–0.88) 
1 + 2 + 3 00.893 (0.86–0.92) 1 + 2 + 3 00.82 (0.76–0.86) 00.821 (0.78–0.86) 
1 + 2 + 3 00.984 (0.93–1.0) 1 1.0 (1.0–1.0) 00.951 (0.89–1.0) 
1 + 2 + 3 00.851 (0.72–0.96) 2 00.778 (0.67–0.93) 00.791 (0.66–0.92) 

aThe sensitivity and specificity were measured at the nearest point to where their values cross when choosing a 
threshold. 

bStudy 1 data are from the reported paper cited in Study 1. 
Abbreviation: AUC = area under the curve. 
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protocol. While rare, isolated cases of TD affecting only 
the feet and toes have been observed. Although foot 
assessment is relatively straightforward, requiring 
participants to remove shoes presents practical 
challenges, particularly for elderly patients or those with 
mobility issues. 

Future Research 
Future research should emphasize a longitudinal 

approach in which patients are monitored monthly or 
quarterly with medication monitoring to demonstrate 
the potential of smartphone-based patient monitoring of 
TD fully. Another avenue for future research is to explore 
the integration of this AI-based diagnostic tool into 
routine telemedicine sessions. This could enhance 
ongoing care for individuals on antipsychotic medications 
by providing continuous, remote monitoring for early 
signs of TD, allowing for timely intervention. 

Future research should also focus on integrating 
medication adherence monitoring with TD diagnostics. 
Understanding patients’ adherence patterns will provide 
critical insights into how treatment strategies can be 
adjusted to prevent the progression of TD and reduce the 
risk of irreversible symptoms. 

CONCLUSION 

The combined studies demonstrate that self- 
administered, smartphone-recorded video interviews 
can reliably yield data scored using algorithms 
produced using highly discriminating machine 
learning approaches. The underdiagnosis of TD, 
exacerbated by insufficient professional training and 
the time constraints of assessments, underscores the 
value of our AI-based tool. Enabling efficient, 
accurate, and scalable detection of TD, followed by a 
psychiatrist’s diagnostic assessment completed 
following the algorithm’s detection, this technology 
has the potential to significantly improve early 
diagnosis and patient outcomes, especially in remote 
care settings where resources are the scarcest. 
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