This work may not be copied, distributed, displayed, published, reproduced, transmitted, modified, posted, sold, licensed, or used for commercial purposes. By downloading this file, you are agreeing to the publisher’s Terms & Conditions.


How the Probability and Potential Clinical Significance of Pharmacokinetically Mediated Drug-Drug Interactions Are Assessed in Drug Development: Desvenlafaxine as an Example

Matthew Macaluso, DO; Alice I. Nichols, PhD; and Sheldon H. Preskorn, MD

Published: March 19, 2015

Article Abstract

Objective: The avoidance of adverse drug-drug interactions (DDIs) is a high priority in terms of both the US Food and Drug Administration (FDA) and the individual prescriber. With this perspective in mind, this article illustrates the process for assessing the risk of a drug (example here being desvenlafaxine) causing or being the victim of DDIs, in accordance with FDA guidance.

Data Sources/Study Selection: DDI studies for the serotonin-norepinephrine reuptake inhibitor desvenlafaxine conducted by the sponsor and published since 2009 are used as examples of the systematic way that the FDA requires drug developers to assess whether their new drug is either capable of causing clinically meaningful DDIs or being the victim of such DDIs. In total, 8 open-label studies tested the effects of steady-state treatment with desvenlafaxine (50-400 mg/d) on the pharmacokinetics of cytochrome (CYP) 2D6 and/or CYP 3A4 substrate drugs, or the effect of CYP 3A4 inhibition on desvenlafaxine pharmacokinetics. The potential for DDIs mediated by the P-glycoprotein (P-gp) transporter was assessed in in vitro studies using Caco-2 monolayers.

Data Extraction: Changes in area under the plasma concentration-time curve (AUC; CYP studies) and efflux (P-gp studies) were reviewed for potential DDIs in accordance with FDA criteria.

Results: Desvenlafaxine coadministration had minimal effect on CYP 2D6 and/or 3A4 substrates per FDA criteria. Changes in AUC indicated either no interaction (90% confidence intervals for the ratio of AUC geometric least-squares means [GM] within 80%-125%) or weak inhibition (AUC GM ratio 125% to < 200%). Coadministration with ketoconazole resulted in a weak interaction with desvenlafaxine (AUC GM ratio of 143%). Desvenlafaxine was not a substrate (efflux ratio < 2) or inhibitor (50% inhibitory drug concentration values > 250 μM) of P-gp.

Conclusions: A 2-step process based on FDA guidance can be used first to determine whether a pharmacokinetically mediated interaction occurs and then to assess the potential clinical significance of the DDI. In the case of the drug tested in this series of studies, the potential for clinically meaningful DDIs mediated by CYP 2D6, CYP 3A4, or P-gp was found to be low.

Related Articles

Volume: 17

Quick Links:


Buy this Article as a PDF